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M. MENEGOTTO and G. MONTI

Dipartimento di Ingegneria Strutturale e Geotecnica, Universita La Sapienza
Via A. Gramsci 53, 00197 Roma, Italy

ABSTRACT

The analytical model is elaborated of a "continuous waved shear key" joint, shaped as a sinusoidal profile,
located at the interface between adjacent precast floor slabs. The aim of the joint is to provide floors with
adequate in-plane strength and stiffness, making them able to distribute the seismic forces among vertical
resisting elements. The performance of this joint is extremely effective under cyclic action of high intensity, as
assessed in a series of experimental tests. In this paper, an interface finite element is developed, in which the
joint response is condensed into two degrees of freedom, ie. the relative displacements, parallel and
orthogonal to the joint, between two nodes of adjacent precast units. The relationship between these two
d.o.f's is ruled by a constraint equation based on the wave profile. When a relative displacement is imposed
parallel to the interface, it develops a resisting mechanism, contributed by the wedge effect of the undulated
profiles and by the friction rising at their contact. The model reproduces correctly this behavior, able to resist
in-plane actions even in the absence of friction, provided transverse confinement is present. The stiffness matrix
is set up also considering the possibility of having the joint open, which may happen when dealing with
complete decks acted on by in-plane shear and bending. The analytical modeling of this connecting element
allows for numerical tests on different floor configurations.
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INTRODUCTION

In buildings, floors primarily sustain the vertical loads, but have also the role of linking columns and walls at
each level to a common horizontal displacement. The "diaphragm action" allows for a distribution among
vertical elements of the wind- or earthquake-induced horizontal forces. Normally, monolithic concrete slabs
may easily fulfill stiffness and strength requirements, provided they are well detailed. Therefore their in-plane
behavior is usually paid little attention, under the assumption, usually made in the seismic design of buildings,
that the idealized behavior is automatically observed. On the other hand, in the design of precast structures this
behavior cannot be assured a priori, since it depends on the adopted shear transfer mechanism between precast
units. For example, prefabricated hollow-core slabs realize long span floors (more than 20 m). These slabs are
extruded on mouldless long-line beds, their only reinforcement being longitudinal prestressed strands. The
joints between parallel slabs are grouted in situ with mortar and the beam-to-slab joints are grouted with
connecting tie-reinforcement. Possibly, no structural concrete is cast on top of the slabs, since it implies



additional self-weight and consequent increase of seismic forces. It is clear that the effectiveness of the
diaphragm action relies on the joints. For this reason, a new type of joint has been developed. A comprehensive
report on its development and testing, as well as general references, can be found in (Menegotto 1994).

THE UNDULATED JOINT

The joint has a waved profile of small amplitude (2.5 mm), represented in Fig. 1. This is a special longitudinal
joint between adjacent precast units, profiled with a continuous undulated shear key, and purposedly realized
for improving the resistance to in-plane shear forces. The particular profile, associated with a transverse
restraint, implies in principle the increase of friction force with increasing displacement, beyond the most severe
structural local deformation. The transverse restraint in real decks is exerted by tie-beams surrounding them.
The joint does not degradate sensibly after severe load reversals. It leads to energy dissipation for friction
during the shear dsplacements, which is favorable under dynamic action, even if normally it will not be
accounted for, being demanded to other structural parts.

>

Fig. 1. View of the undulated joint (left) and scheme of short samples tested (right).

EXPERIMENTAL CAMPAIGN

The experimental research has developed along eight years, with tests on both short laboratory specimens of
the waved joint (Menegotto and Morelli 1984) and large full-scale untopped decks, incorporating the waved
joints (Menegotto 1988; Menegotto and Monti 1988). The study aimed both at evaluating the strength and
stiffness characteristics of the joint and at improving and testing the behavior of extruded hollow-core slabs
without in situ topping in their diaphragm action under seismic conditions. A first part of the experimental
research has been performed on samples of joints, 1.0 m long, for different slab depths. The testing scheme is
shown in Fig. 1. The sample is fixed horizontally on a suspended twin steel frame, by means of which an
alternate reversing shear force is applied to the joint, precisely along its axis. Four external hinged steel rods
hold the sample halves tight together, simulating the effect of tie-beams exerting a compressive transverse
force on the joint and governing the friction. Most joints were artificially pre-cracked, by means of a vertical
bending load, in order to simulate possible unfavorable service conditions. About 30 samples were tested and a
typical result of one test is shown in Fig. 7, in terms of force-displacement diagram. Some conclusions were
derived, which may be summarized as follows. The shear response of the pre-cracked joint is depending on the
transverse restraint, hence, the importance of sufficiently stiff tying of the structure is emphasized. For small
relative displacements (<2 mm), also cyclic, an average shear resistance of 0.5 N/mm? (referred to the height of
the waved profile of 95 mm) may be relied upon, with a minimum tying at the deck's edges. For greater
displacements, the resisting shear force grows. This strain-hardening behavior represents a very sound feature.
After cycles of severe loading reversals, the shear resistance does not lower sensibly which is also a major
aspect of sound behavior, contrary to what has been shown by plain or indented joints.

While the tests on short joints specimens had the scope of adjusting and checking the surface shape and its
local behavior, tests on full decks check the behavior in more realistic conditions, accounting for joints length,
combined bending, real stiffness of tie-beams and surrounding structure (Fig. 2). Decks spanned up to 12 m,
and were of 6 m wide (five precast hollow-core units). The tested model represents structural conditions where
the deck is a horizontal cantilever, fixed along a side joint of a slab. Thus, that joint is subjected to both in-
plane maximum shear and bending, when horizontal forces, applied by means of two jacks, act on the deck. A
concrete platform provides bulkheads for counteracting the jacks and for clamping fixed slabs and tie-beams.



These tests on complete decks confirmed the resistance capacity of joints and gave further information. Joints
show high stiffness under service conditions, such that the decks may be considered as rigid. The horizontal
forces reached in the different tests were such that the corresponding shear stresses were 0.42-0.95 N/mm?2.
The ability of the surrounding tie-beams, even weak ones, to exert a restraint on long joints, though placed
only at their ends, was proved. In all tests, the tie beam reinforcement came to yield, showing that the
mechanism is able to mobilize its entire capacity. However, the applied forces were always larger than possible
design forces. The test results were of similar appearance as those of the tests on one joint specimen in Fig. 7,
but the curves are less regular with respect to the isolated joints, due to interactions of all parts of the whole
structure, cracks, adaptations of connections, yielding of tie-beam, and so on.

Fig. 2. Full scale decks testing setup.

GOVERNING EQUATIONS OF THE JOINT

Sliding of sinusoidal profiles

Two sinusoidal profiles of amplitude A and wavelength A are considered (Fig. 3). The profiles are identified by
the two equations:

nix)=4 sinzT”x (1)
¥a(x,5) =w(s)+ 4 sin 2T":(x -s) (2)

The former represents a fixed profile, while the latter is that of a moving profile which, starting from a position
of perfect superposition, slides longitudinally on the former by a quantity s and moves away of a quantity w.
The function w(s) represents the constraint equation, which links the relative opening to the relative slide of the
two profiles. The determination of w(s) is based on two conditions: a) the two profiles always have a contact
point; b) the contact occurs between two points with the same tangent.

These two conditions are expressed, respectively, by:

A sin%x=w(s)+A sin?{i(x—s) (3)

2—7!"-A cosz—nx =—2-£A cosz—”(x-—s)
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Fig. 3. Sinusoidal profiles subjected to relative sliding. Initial profiles (left) and deteriorated profiles (right).

From Eq. (4), the abscissa x of the contact point C is obtained:

s
Xr=— S
c=7 &)
which indicates that the contact point C between two profiles is always located at half of the relative sliding of
two points initially superposed at the origin (O and O’ in Fig. 3).
Substituting Eq. (5) into Eq. (3), the sought expression for w is obtained:

. T
w=24sin—|s| 6)
A
where the absolute value of s and the resulting positiveness of w, indicate that the two profiles transversely
move away, both for positive and negative values of the relative sliding.

It should be noted that the maximum distance 24 between the two profiles, is obtained for a relative sliding s
equal to half wavelength (Fig. 4). In this situation, the contact point is located at x~ = A/4, on the peaks of the
sinusoids. Any increase of the relative sliding will bring the two profiles closer. However, the wavelength has
been chosen so to avoid this occurrence in practical conditions.

The variation of the tangent at the contact point C (Fig. 3) is given by:
T
tano . =24—cos—|s|-sgns 7
c ) AI | g ™

where sgn denotes the sign function. Note that the first sliding (s= 0) occurs with initial angle o,=2n4/A, equal

to the slope of the tangent at the origin of the sinusoids.
Egs. (6) and (7) are represented in Fig. 4, for profiles with 4 = 2.5 mm and A = 50 mm.
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Fig. 4. Sinusoidal profiles: lateral displacement vs. sliding (left), slope at contact point vs. sliding (right).



Sliding of scraped sinusoidal profiles

In case of perfect profiles, the contact point is unique and moving along the convex portions of the sinusoids.
Due to the persisting contact, the two profiles are subjected to scraping effect which modifies the shape of the
profiles in a complex way, so that in reality multiple contact points can be present at the same time and vary
irregularly. Since a pointwise modelization along a continuous wave of such a complicated phenomenon would
be inexpedient, an average profile alteration, typical for the whole profile, has been assumed (Fig. 3). A
constraint equation, based on the joint profile and made to vary depending on the damage due to scraping
effect between profiles, has been developed (Menegotto and Monti 1995).

Determination of the longitudinal force

Two sinusoidal profiles, subjected to relative sliding under transverse confinement, generate in the direction of
sliding a resisting force F;, contributed by two parallel mechanisms: a wedge-action, depending on the
instantaneous slope & of the tangent at the contact point, while the second is a friction mechanism between
two profiles, depending on the friction angle ¢. Sliding occurs if the following equality is satisfied (Fig. 5):

F,=F, tan(ct, +¢-sgns) 8)

where sgn denotes the sign function and s is the relative sliding velocity between the two profiles.

Fig. 5. Components of the forces acting at the contact point C of two sinusoidal profiles.

FINITE ELEMENT OF THE JOINT

The constraint and equilibrium equations described above are the basis for the development of a finite element
which models the behavior of the undulated joint. In view of the modelization of an entire deck, whose mesh
includes shell elements for the slab and beam elements for the tie beams, the finite element for the undulated
joint is developed as a two-node element which connects the corner points of two adjacent shell elements
discretizing the precast slab units (Fig. 6). The element has therefore four d.of's: U={w v u, w},

which are transformed into the local d.o.f's w and s, defined in the previous section, as follows

{w} [—1 0 1 o]
u=R-U - = U 9)
s 0 -1 01

These local d.o.f's are linked through the constraint equation, Eq. (6), which introduces an internal constraint
and obliges both nodes to move relatively to each other on the line given by the sinusoidal profile. For the time
being, no damaged profile was modeled in the finite element. When dealing with complete decks, the constraint
equation is modified into

w24 sin%]s| (10)

because also opening (i.e., loss of contact) of the joints are allowed.
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Fig. 6. Finite element of longitudinal joint between adjacent precast slab units.

In order to comply with this internal constraint, the finite element is formulated by means of the so-called

'penalty method', which allows to write a constrained variational principle, that is, a functional including the
constraint equation, as follows

T

H=k-(w—2A-snnx|s|) (11)

where ( )_ indicates that, due to Eq. (10), only the negative part of the constraint equation is considered, and &

is a 'penalty number'. The solution obtained by the stationarity of the functional IT will satisfy the constraint
only approximately. The larger the value of k the better will be the constraint achieved. Performing the
variation of IT with respect to w and s, one obtains

3_1]: (w-2A sin~. sl) w=0

aw A
_ (12)
‘3_1;[=—k (W—ZA sin%ls[) 2A%cos%|s|-sgns-&=0

and, after eliminating the variation quantities w and &s with the standard argument of arbitrarity, the two
equations are obtained, which are to be satisfied at the same time

k (w—2A sin-}|s|) =F, e
(13)
z

2 cos-j%| s|-sgns=F,

—k (w—-ZA sin%]s|) 24

where AF,  are the residuals.

The first equation represents the restoring force that the element exerts when a displacement is applied in the
direction w, while the second equation represents the restoring force for a displacement applied along s. Both
forces are contact forces which prevent the two sliding profiles from compenetrating. It should be recognized
that, considering Eq. (7), the second equation can be rewritten as

—k (W—ZA sin%lsl) tano, = F,,,, (14)

which basically implies that the wedge-action depending on the instantaneous slope o of the tangent at the
contact point is implicitly accounted for by satisfying the second equation.



Due to the nonlinear character of the phenomenon, the tangent stiffness matrix is obtained through linearization
of Egs. (13), using Eq. (7), as follows

k-Aw—ktano, . - As = AF,

w,res

2 15
—ktana, - Aw +[2ktan2 o, +2kA%(w sin%l s|- ZA))- As=AF,,. (13)
Eqgs. (15) can be written in matrix form, to yield the local (as expected, symmetric) stiffness matrix K:
k l ~ktana,,
""""""" B K. Ay =
—ktanor, i 2ktan’ o, +2kA%—(w sin% sl—ZA) Au=K-Au=AF,,, (16)
|
where, as above, Eq. (7) was used, and AF, ., represents the residuals vector.
Friction is an additional force that modifies Eq. (14), in compliance with Eq. (8), as follows
—k (w—2A sin%lsl) tan(oc. +¢-sgns)=F, a7

The modifications introduced in the stiffness matrix by the friction action are obtained through linearization of
the above equation, with respect to w and s, respectively

K., =K, = —ktan(a +¢-sgns)

. . . m; Y l+tan’(a.+¢-sgns (18)
Ku=ktanac-tan(ac+(p-sgns)+2k41;sm—):|s](w—2AsmI|s|) l-l(-t;'nzgc )

Finally, the joint's element stiffness matrix in the global reference system is obtained as

K; =RT KR (19)
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Fig. 7. Shear force vs. sliding for a cyclic test on a joint: experimental (above) and numerical (below) test.



CORRELATION STUDIES

Correlation studies with experimental tests have been performed with a preliminary model based on the
governing equations developed above. As a starting point, the cyclic tests conducted on isolated specimens
(Fig. 1) were reproduced, as shown in the example in Fig. 7. The governing equation adopted includes the
profile damaged as from Fig. 3.

The numerical tests present satisfactory agreement with the experimental ones. In quantitative terms, the
resisting force of the joint is correctly predicted, both for small and large amplitude cycles. The increase in
resistance with the increase of displacement is also well reproduced. This is an extremely beneficial feature of
the joint. Also after several cycles with constant amplitude, where a certain decrease in resistance is observed,
due to profile scraping, when larger displacements are imposed, contact moves on points of the profiles which
are still intact (not abraded), so that the resisting force can increase. Another important phenomenon, also
related to the above mentioned mechanism, is the curvature inversion of the load branches following the first
one. This is due to the hollows of the scraped profiles which present a reverse curvature with respect to the
original sinusoid, as shown in Fig. 3.

CONCLUSIONS

The experimental research led to comprehensive and favorable results. It showed that the use is possible of
untopped floors with grouted joints as diaphragms under severe seismic conditions. The behavior of the tested
joint, with waved profile, demonstrated to meet all the requirements of resistance, "ductility", "strain-
hardening" and little sensitivity to low-cycle fatigue. In seismic areas, untopped slabs are beneficial in that they
reduce the response by saving mass.

From the analytical viewpoint, the developed model of the joint's behavior is reliable and accurate. Its
incorporation into a finite element of the joint itself represents an essential component for the simulation of
complete decks, which will allow to avoid more experimental tests, expensive and time-consuming, and to
implement an easier and more comprehensive investigation campaign based on numerical testing, for assessing
the effectiveness of in-plane behavior of precast floors of different shape, dimension and features.
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