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ABSTRACT

The spatially varying earthquake ground motion has a spatial variation usually increasing due to wave propagation inside
the ground. It is important for the design of spatially-extended underground structures to get information on the spatial
variation in near-surface soil layers. The aim of this study is to examine the depth-dependence of the spatial variation
described by the coherence function, based on twelve earthquake events observed at ground levels -1 m, 10 m, and —20
m in the Chiba array. To quantify the spatial variation at each depth in great detail, some spatial variation parameters are
analyzed by using the coherence function model proposed in this study. Then the spatial variation parameters, that is, the
spatial correlation coefficient and the normalized fluctuation scale, are modeled as a function of depth. The results show
that the spatial correlation increases with the decrease of depth level beneath the surface. Also, it is indicated that, within
the limitations of the area considered, the amount of the spatial variation at the surface for horizontal and up-down
components would be about 18 per cent and 12 per cent respectively, and that the spatial variation from the surface down
to the —20 m level is more than 20 per cent with respect to that in the deeper soil layers.
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INTRODUCTION

Grasping the spatial variation characteristics of earthquake ground motion is important for the prediction of the behavior
of underground facilities during an earthquake. The earthquake ground motion varies in space. Two time histories of an
array observation record will never coincide so long as the observation points differ (Katayama, 1991). Itis usually the
coherence function that describes the similarity of two time histories in the frequency domain. Thus, the coherence
function is utilized to characterize the spatial variation. Array observation records provide useful information for evalu-
ating the spatial variation of earthquake ground motion. The spatial variation at the ground surface has been extensively
studied by using a coherence function based on array records by Harada (1984), Harichandran and Vanmarcke (1986),
Loh and Yeh (1988), Sawada and Kameda (1988), Hao (1989), Kataoka et al. (1990), Abrahamson et al. (1991), Lu et al.
(1994) and Nakamura and Yamazaki (1995). The spatial variation due to an inhomogeneous medium was numerically
investigated by the finite difference or element analysis assigning the perturbation to the seismic velocity structure by
Menke et al. (1991) and Sato and Kawase (1992). These studies were only qualitative, and the results should be verified
using array observation records. Compared with the number of studies devoted to the spatial variation at the ground
surface, those of the spatial variation of the underground motion are very few in number, owing to the limitations of
availability of related array data.

To quantify the spatial variation of underground motion, this paper is aimed at the examination of the depth-dependence
of the spatial variation for free-field earthquake ground motion in terms of the spatial variation parameters, based on
twelve earthquake events observed at the Chiba array, Japan. The spatial variation parameters are analyzed using the



array records at the ground levels, —1 m, —10 m, and —20 m. These spatial variation parameters are the coherence
function, spatial correlation coefficient and the normalized fluctuation scale. They are modeled for a better understanding
of the depth-dependent spatial variation of earthquake ground motion.

ESTIMATION OF SPATIAL VARIATION PARAMETERS

Ground motion records at the depth level, z, are vectorially converted into the radial and transverse directions. The spatial
variation of the ground motion for each of the three vibration components, i.e., radial (j = R), transverse (j = T), and up-
down (j = U), is taken into account. In this study, assuming the strong motion parts of the acceleration records to be
statistically homogeneous and stationary over the area and time duration considered, the one-sided power spectra G j; are
computed by use of that limited part. Then the variance of the ground motion is

0;*(2)=[,G;(0.0.2.0)4, (1)
and then the unit-area power spectrum is
9,i(0. 0.2.£)=G;(0, 0, 2. f) [0 ;*(2). @)

Since only a limited portion of time history is analyzed, the coherence function is obtained from the smoothed power
spectra at specified locations, x and x +&. Using the cross power spectrum, the coherence function is defined as

V(& & 2.0)=|G (& & 2.)|/G;(0. 0, 2.7), 3)
at the separation vector, ( £,, &,), and the frequency, f, converted from the time lag. The coherence function becomes unity for all
frequency if the separation vector is zero:

7,(0.0,2f)=1.0. 4)
The coherence function gives us all information about the horizontal spatial variation of earthquake ground motion.
Using simple estimates, that provide us with the more condensed information is sometimes convenient. We call the
simple estimates spatial variation parameters (Vanmarcke, 1983; Harada, 1984). As one of the spatial variation param-
eters, the correlation area is defined by the integral of coherence function over separation vectors:

6,i(2. )= [fgr (& G 2.1)dEsdéy. 5)
Also the spatial correlation coefficient is expressed as
M6 & 2)=[,95(0.0.2.0) 756 & o 1) ©)

that shows a weighted integration of the coherence function by the unit-area power spectrum. Furthermore by integrating
the spatial correlation coefficient, the fluctuation scale of the ground motion is obtained as

a;i(2)=[fn;i (& & D& )

The fluctuation scale is the most condensed spatial variation parameter. Since it depends especially on the area usually
limited in practice, the normalization by the area is adopted for the fluctuation scale to get the appropriate estimate. Then
the normalized fluctuation scale with the specified area, A,, covered by the limited separation vector € is

g i(2) = t(z)fAg . (8)

Based on the acceleration records, the depth-dependence of these spatial variation parameters is examined in following
chapters. The spatial variation parameters, however, can also be defined for velocity and/or displacement records in the
same way.

DEPTH-DEPENDENT SPATIAL VARIATION OF GROUND MOTION

In the array observation at the Chiba site (Katayama ez al., 1990), fifteen accelerometers installed at GL — 1 m are
covering an area of approximately 300 m square, as shown in Fig. 1. The topographical and geological conditions in the
site are generally simple and the ground surface is almost flat. In such a condition, this study focuses on the depth-
dependence of the spatial variation. Then the analysis is carried out by using the twelve earthquake events in the Chiba
array records at GL —1 m, —10 m, and —20 m, as listed in Table 1. At each event, the time windows of 10 seconds for R
and T, and 7.5 seconds for U, are analyzed (At = 0.005 s), corresponding P-wave and S-wave parts, respectively.

Data Processing for the Coherence Function and Preliminary Analysis

Point Power Spectrum. A spatial variation of ground motion can be investigated by the power spectrum of each point at
the same ground level as likely the coherence function, equivalent in the frequency domain to the space-time earthquake



Table 1. Location of Borehole Accelerometers (O: used, A: unused).
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Fig. 1. (a)Layout of near surface (GL — 1 m) accelerometers, and (b) distribution of
separation vectors resulting from those 15 combinations.

ground motion. The result for the earthquake event 8519 is used as a typical example. Figure 2 shows the acceleration
power spectrum averaged using the records of seven points (CO, P1-P6 in Fig. 1) at the same ground levels, -1 m, -10m,
and -20 m. The top and bottom of this figure show the mean and the C.O.V. of the power spectrum, respectively. Note
that for the case using more number of records where the larger area is considered, the similar result is obtained for the
mean, whereas the C.0.V. increases as the area increases. It can be seen from the mean of the power spectrum that the
amplification of the ground motion differs at each frequency; especially at the frequencies of around 2.5, 4, 6, and 8 Hz.
It also can be seen that the amplification for horizontal components is different from that for up-down component because
the different time windows are used for the horizontal and up-down components as mentioned above. These results are
consistent for the analysis based on the one-dimensional wave propagation theory (Katayama et al., 1990; Lu ez al.,
1990). The C.O.V. of the power spectrum in the bottom of Fig. 2 is due to the spatial variation of the ground motion.
Therefore, the C.O.V. of the power spectrum is considered representing the spatial variation at the specified frequency.
Although it is difficult to distinguish the difference of the C.O.V. at each depth level, it can be seen that the C.O.V.
increases as the frequency increases. It is expected that the spatial variation of ground motion is increasing in the
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Fig.2. Acceleration power spectrum at depths of GL —1 m, ~10 m, and 20 m for
event 8519 (top: mean; bottom: coefficient of variation).
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Fig.3. Coherence function (transverse component of event 8519) interpolated with
respect to absolute distance (top: frequency; bottom: distance).

amplification process of the ground motion in the near-surface soil layers. The clear depth-dependence of spatial varia-
tion, howeyver, could not be seen from this C.0.V. of the power spectrum at depth levels, 1 m, 10 m, and 20 m.

Data Processing for the Coherence Function. Coherence functions are calculated from pairs of acceleration records
assuming their strong motion parts to be statistically homogeneous and stationary. As expected, the coherence function
decreases as the frequency and separation distance increase. It is shown that, especially at the dominant frequencies, the
coherence function shows a rapid decay only due to the rapid changes of the phase spectrum (Lu ez al., 1990). Therefore,
local decays are removed and the coherence function model is assumed to be an envelope of coherence function com-
puted in the analysis following Kataoka et al. (1990).

Since the coherence function computed in the frequency domain depends strongly on the smoothing of power spectra,
specifying the information of the smoothing procedure is important. To remove appropriately the local decays of the
coherence function, the power spectrum is smoothed by applying the Parzen’s spectral window with a specified band-
width of 0.4 Hz. To estimate the envelope of the computed coherence function, this study adopts the technique that uses
the narrow smoothing bandwidth of the 0.4 Hz and then the local peaks of the coherence function. Then, a nonlinear
regression analysis to these peaks is conducted for estimating parameters of the model for the R, T, and U to investigate
the difference of the value of model parameters among them. That technique would yield an appropriate engineering
estimate for the coherence function (Nakamura and Yamazaki, 1995).

For each event, the coherence function is linearly interpolated as a continuous surface, based on the layout of the near
surface (GL -1 m) accelerometers and the distribution of separation vectors resulting from all combinations. The point
coherence function is computed for all pairs of acceleration records. By the use of the spatial interpolation of the station
spacing to be a limited set, the coherence function then can be plotted as a function of both of the frequency and separation
distance. As an example, the coherence function is shown in Fig. 3 for the S-wave part of the transverse component
(event 8519). The coherence function decreases with both frequency and separation distance. Similar results were
obtained from the analysis of other events. Note that the distribution of the separation vectors available to estimate the
coherence function may not be the same in different spatial ranges as can be seen from Fig. 1. Thus, the confidence in
each estimate could vary. In general, less of confidence is associated with the coherence function for larger separation
distances.

Coherence Function Model. A Gaussian coherence function model with spatially ellipsoidal correlation structure has
been proposed by Nakamura and Yamazaki (1995) for the spatial variation of space-time earthquake ground motion as
follows:

2, 2
C -
J’Jj(ér’ &.f)=¢ COfexp‘ - ol = ( 261+ 4 )] ( € COf)exp l—cj;z (642§r2+§'2)l ®
in which ¢;’s are parameters of the model. The parameter ¢, findicates decay with frequency at short distances and ¢, a degree of



Table 2. Averaged values of the model parameters regressed by those from each
event for the coherence function at each depth.
(a) Model parameter for GL-1 m (b) Model parameter for GL—-10m (c) Model parameter for GL-20m
S () ¢ (k) coans) ca(Hz) () cofs) ¢ (kms) cp (kmfs) c3(Hz) ca() co(s) ¢ (k) o (kans) c3(Hz) ¢4 ()
Radial 00302 745 00824 584 101 00114 362 0.140 509 103 00216 480 0.174 487 090

component

o 0.0067 67.5 0.0136 419 0.16 0.0042 167 0.061 173 025 00036 380 0034 271 031
Transverse  0.0310 412 0.0952 336 114 00152 63.8 0203 646 120 00213 516 0192 426 1.14
44 00049 321 0.0226 234 0.22 0.0050 51.6 0.058 345 039 0.0064 583 0037 388 (.14
Up-down 00069 89 01069 4.8 095 00101 7.00 0.116 0410 1.13 00095 7.05 0.113 0330 094
g 00059 85 0.0297 117 0.19 0.0032 288 0.023 0630 0.21 00028 1.59 0.042 0602 0.30

o standard deviation of 12 (for S-wave) or 11 (for P-wave) samples.
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Fig.4. The coherence function model for transverse component of event 8519
(top: frequency; bottom: distance).

spatial anisotropy. The correlation area of each exponential is assumed as o / ( 2+ c32) for large distances and as ¢,2 / f? for
shortdistances. A nonlinear least squares procedure is used to fit this model to the peaks of coherence function computed from the
records for each event. The result for each depth level, 1 m, 10 m, and 20 m, is listed in Table 2. Although the model considers
the ellipsoidal correlation structure using the parameter c,, it is found that the results of analysis do not show the significant
anisotropic correlation structure of the coherence function model. For the S-wave part of the transverse component (event 8519),
the model is plotted in Fig. 4, to which the computed coherence function shown in Fig. 3 corresponds.

The correlation area is obtained by integrating the coherence function simply with respect to the separation distance.
However, the depth-dependence of the correlation area is not so significant as the C.0.V. of the power spectrum shown
in Fig. 2, compared with other spatial variation parameters. The result of the correlation area is not shown in this paper for
that reason.

Spatial Variation Parameters at Each Depth: GL—-1m, -10m, and -20m

The spatial variation parameters show the average of the information about the spatial variation of the ground motion. In
this section, the spatial correlation coefficient and the fluctuation scale are considered as the spatial variation parameters.
The spatial correlation coefficient averages the information with respect to the frequency and the fluctuation scale aver-
ages the information with respect to the frequency and the separation distance for the spatial variation of the ground
motion.

Spatial Correlation Coefficient. Figure 5 shows the mean and C.O.V. of the spatial correlation coefficient calculated for
R, T, and U at each depth level, 1 m, 10 m and 20 m. Note that in this case the direction of the separation vector is at 45
degrees from the epicentral direction. The top of Fig. 5 shows that the spatial correlation coefficient decreases steeply at
closer separation distances up to about 50 m. The spatial correlation coefficient for U is larger than those for R and T and
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is close to 1.0 as the depth level increases. This result reflects a tendency of the coherence function. Note that at GL —10
m, the spatial correlation coefficient for R and T do not show a steep decrease at shorter distances, similarly to the
coherence function. The C.O.V. of the spatial correlation coefficient in the bottom of Fig. 5 increases with the increase of
the separation distance. These results of the spatial correlation coefficient are calculated from the coherence function
estimated using the Chiba array records. Accordingly, the results from horizontal arrays at GL — 1 m and -20 m can be
used within separation distances up to 300 m, and those from the array at GL —10 m can be used within approximately 150
m. It is complicated to model the spatial correlation coefficient because the number of available data is small. However,
the model is proposed as an attempt to investigate trends with respect to depth. The model is restricted by the asymptotic
condition, that, the spatial correlation coefficient approaches unity with the increase of the depth, and is shown as
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Table 3. The parameters estimated for depth-dependent model of normalized fluc-

tuation scale.
Vibration Parameters of the model _ Coefficient of
component Cal=) Zg(m) determination
Radial 0.188 81.0 0.94
Transverse 0.180 67.9 0.69
Up-down 0.117 41.9 0.85
lej(z; & &) =1-cp(& &)exp {_Z/Zn (& é)‘)} (10)

where 1 - c;, is the value of the spatial correlation coefficient at the ground surface and z; indicates the correlation depth
corresponding to the correlation distance for the depth direction of exponential part of this model.

To make the result for this model clearer, in Fig. 5, the values of the spatial correlation coefficient at GL -1 m and 20 m
are used. Fig. 6 shows the mean values of the spatial correlation coefficient in Fig. 5 with its model curves. It is shown
that the spatial correlation coefficient for R and T is depth-dependent especially at shorter horizontal distances, whereas
that for U is depth-dependent at larger distances. Fig. 7 shows the values of the model parameters. It can be seen from this
figure that ¢, for all three components increases with the increase of the separation distance. The correlation depth, z,,
increases for R and T as the separation distance increases. zj for U does not show a monotonic increase but a peak at
around 70 m, which corresponds to the end of the decrease at shorter distances.

Normalized fluctuation Scale. The normalized fluctuation scale is equivalent to the fluctuation scale for the random
wave divided by that for the coherent wave. The normalized fluctuation scale is computed by numerical integration of a
composition of the unit-area point power spectrum and the estimated coherence function in space and frequency do-
mains. Fig. 8 shows the mean and C.O.V. of normalized fluctuation scale for R, T, and U estimated at each depth. Note
that for the normalization, the specified area adopted in (8) is considered as 300 m x 300 m in this case. It is found that the
normalized fluctuation scale decreases with the increase of the area, because the coherence function decreases with the
increase of the separation distance. As the depth increases, each mean of the normalized fluctuation scale approaches
unity. The C.0.V.s are generally around 0.025 at all depths. The C.O.V. for T increases and for U it decreases as depth
increases. When the number of data is small, a meaningful modeling is very difficult for reasons of sensitivity. However,
modeling of the normalized fluctuation scale may be possible due to its asymptotic condition. Considering the results of
the analysis and the asymptotic condition for normalized fluctuation scale, the model for the fluctuation scale is proposed
as

0ti(2) =1 co €XP (~2/2¢) (11)
where 1 - ¢, is the value at the ground surface and z,, indicates the vertical correlation distance normalized fluctuation
scale. A weighted least squares analysis is conducted for estimating the parameters of the depth-dependent fluctuation
scale model. The weight is considered as the inverse of the C.0.V. of the fluctuation scales that is ranging from 0.014 to
0.040 plotted in Fig. 8 (b).

It can be seen from this model curve in Fig. 8 (a) that the normalized fluctuation scales become larger at deeper levels,
although the scale at GL -10 m is slightly different. This result clearly shows that the correlation of the up-down
component is higher than that of the horizontal components at each depth. The estimated values of the model parameters
are listed in Table 3. At the ground surface, within the extent of the specified area, the observed decrease of the spatial
variation for the horizontal and up-down components are around 20 per cent and 10 per cent, respectively. c,,, the
normalized fluctuation scale, for R and T is about 0.9 times of that for U. The vertical correlation distance of the model



for R and T is about 1.8 times of that for U. The ground motion even at GL. —20 m is spatially varying for R to about 78%
{exp (20.0/81.0)}, for T to about 74% {exp (20.0/67.9)}, and for U to about 62% {exp (20.0/41.9)}. Therefore the
amount of the spatial variation shallower than depth level 20 m is small but comparable to that deeper than depth level 20
m. It might be affected by the inhomogeneity of a near-surface soil layer.

CONCLUSIONS

Based on a dense array observation, this study shows the basic evidence for further research to understand more realisti-
cally the depth-dependent spatial variation of earthquake ground motion over small areas. The spatial variation param-
eters such as the coherence function, the spatial correlation coefficient, and the fluctuation scale, are analyzed mainly for
the space-time earthquake ground motion. Using the coherence function to represent the spatial variation over small
areas, it is demonstrated that as the ground level becomes deep, the coherence function increases especially at shorter
distances and higher frequencies.

In future, it might be required to compare the spatial variation parameter with the point maximum ground motion param-
eter, e.g., for the fluctuation scale with the PGA. As the depth increases, the PGA decreases while the fluctuation scale
increases. Those trends are significant especially at the near-surface. This result is consistent with our engineering sense
that the ground motion is more coherent in the deeper ground level, although at GL —20 m the ground motion is not so
coherent. The spatial ground motion parameters proposed here are utilized for the parametric study of the seismic
response analysis of spatially extended structures, such as populous large underground facilities.
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