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ABSTRACT

The main primary inputs to a seismic hazard analysis are historical and instrumental earthquake catalogs
and attenuation laws. Especially historic earthquake data are often imprecise, i.e. the earthquake size and
location can only be estimated with uncertainties. Models based on probability distributions have been de-
veloped in order to quantify and represent these uncertainties. Traditional seismic hazard procedures do not
take into account these uncertainties. Therefore, a procedure based on Bayesian statistics was developed to
estimate return periods for different ground motion intensities (MSK scale). The method estimates the prob-
ability distribution of the number of occurrences in a Poisson process described by the parameter A. The
input are the historical occurrences of intensities for a particular site, represented by a discrete probability
distribution for each earthquake. It can be shown, that the variance is smaller in regions with higher seismic
activity. It can also be demonstrated that long return periods cannot be estimated with confidence, because
the time period of observation is too short. This indicates, that the long return periods obtained by seismic
source methods only reflects the delineated sources and the chosen earthquake size distribution law.
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INTRODUCTION

Earthquake hazard analysis is worldwide of considerable importance, either due to a significant seismic ac-
tivity or the high economic values that are at risk. Seismic hazard analysis is usually based on historic earth-
quake records as well as instrumental data. In Switzerland the historic record goes back to the 13th century,
but is only complete for earthquakes with intensity IX or greater for the complete time period. This historic
earthquake data have to be used in seismic hazard analysis to get a realistic description of return periods,
since the time period of instrumental recording is too short to reveal the complete pattern of seismic activity.
However, historic earthquake data are often inaccurate and uncertain. In order to properly use these data,
the uncertainty has to be quantified and taken into account in the hazard analysis.



Various procedures are available for evaluating seismic hazard (Cornell (1969), McGuire (1976)),
which all use a three step procedure consisting of a source seismicity model, an attenuation model and an
exposure evaluation model. These traditional methods of calculating seismic hazard, often called “deduc-
tive” or “seismic source” methods do not treat the observations uncertainties completely. Usually they take
only the uncertainties in the ground motion attenuation model into account. Bender and Perkins (1987) de-
veloped a procedure which also treats earthquake locations uncertainties, but there exists yet no method
which completely accounts for the errors of the location and size of each earthquake.

Therefore, a new approach based on Bayesian statistics was developed (cf. Riittener (1995), Egozcue
and Riittener (1996)). In this method, the mean return period in a Poisson process and its variance is esti-
mated taking into account the previously defined uncertainties of epicenter locations, earthquake size and
attenuation relations. Before these uncertainties can be taken into account, they have to be quantified and
appropriate models have to be defined. Therefore, probability distributions have been introduced to char-
acterize the uncertainties of each earthquake individually.

HISTORICAL EARTHQUAKE DATA

The estimation of the location and size of historical earthquakes is based on historical observations. As his-
torical reports are often ambiguous and incomplete, the derived earthquake parameters are always accom-
panied by some uncertainties. Usually, these uncertainties depend on the size of the earthquake, on the
historic period in which it occurred and on the population density in the epicentral area. When a historic
earthquake catalog is compiled, these information is rarely used to quantify the uncertainty of the size and
location of the event. Therefore, the historic earthquake catalog was reevaluated and errors for size and lo-
cation of historic earthquakes were introduced.

Four different error classes were used to describe the error of the epicentral intensity estimates. These
four classes are: intensity error of (1) O degrees, (2) +0.5 degrees, (3) £1.0 degrees and (4) +2.0 degrees.
These error classes were converted into probability distributions, whereby the following conditions have
been taken into account: a general tendency in historical sources to report maximum observed damages, and
a probable underestimation of epicentral intensities due to location errors. Figure 1 shows the used proba-
bility distribution for the 4 error classes. It is clear, that the probability distributions are based on subjective
interpretations of historical earthquake data. Therefore, they have to be tested in combination with intensity
attenuation laws. The tests which have been carried out (Riittener, 1995) have shown that these probability
distributions in combination with the attenuation laws for Switzerland model the observed intensity distri-
bution pattern accurately. It is worth to mention that the description of errors by probability distributions is
flexible enough to represent a great variety of historical information. If for example historical observations
can be summarized as “the earthquake had an epicentral intensity of at least VII (MSK) but was not greater
than intensity IX”, a probability distribution with equal probabilities for the intensity range from VII to IX
can be used to model this earthquake.

Also the epicenter location errors are modeled by probability distributions. Instrumental as well as
macroseismic locations can be seen as maximum likelihood estimations. In this context a maximum likeli-
hood estimation of the earthquake location can best be modelled by a two-dimensional normal distribution,
whose density for circular symmetry with covariance equal 0 is given by (1). More explicitly, the probabil-

ity P that the epicenter lies in an area (AxAy) , assuming that the most probable epicenter is at (0,0) and
that the standard deviation is G, is equal to the integral over this area of the probability density function (2):

Fm= (=5 oo~ 17 +2,7)) (1)
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and



P(&x, &)= [ f(x)dxdy (2)
AxAy

where x,,y, are the point of interest, ¢ the standard deviation (location error) and Ax, Ay the area for
which the probability is calculated.
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Figure 1: Conversion scheme for intensity errors into probability distributions. Probability distribution
for: a) error of 0, b) error of +0.5, c) error of +1 and location error <10 km, d) error of +1 and location error
>10 km, e) error of +2 and location error <10 km, and f) error of +2 degrees and location error >10 km.

From the instrumental data catalog accurate information about the depth distribution of earthquakes in
Switzerland is gained. The focal depth distribution for well-constrained earthquakes reveals that in the Al-
pine Belt, focal depths are restricted to the upper most 15 km of the crust. In contrary, the earthquakes are
distributed throughout the entire crust (up to 30 km) in the Alpine foreland (Deichmann and Baer (1990)).
This depth distribution is considered in the final model for hazard analysis also by probability distributions.
Once the models for earthquake location uncertainty, earthquake size uncertainty, focal depth distribu-
tion and intensity attenuation are established, the probable ground motion for a specific earthquake can be
modelled for any site. In this study, a probabilistic intensity attenuation law was used, which takes into ac-
count the discrete character of macroseismic intensities and their uncertainties (cf. figure 1). If the probable
ground motion that is produced at a particular site is calculated for each event in the earthquake catalog, the
historic occurrences of ground motions for this particular intensity is obtained. These ground motion occur-
rences will be called “Earthquake Site Catalog” (cf. figure 2). The earthquake site catalog contains for each
earthquake a discrete probability distribution of the ground motion that occurred at this particular site.
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Figure 2: Steps involved in the calculation of “Earthquake Site Catalogs”. The ground motion probability
distribution is calculated for each earthquake taking into account uncertainties in size, location, ground mo-
tion attenuation and depth distribution model.

BAYESIAN ESTIMATION OF SEISMIC HAZARD

The method developed is based on Bayesian statistic. Bayesian statistical theory provides a mathematical
model for incorporating statistical and model uncertainties as well as individual and more subjective ele-
ments (Benjamin and Cornell (1970), Press (1989)). Bayesian estimation techniques have been applied in
seismic hazard analysis either in order to estimate single input parameters for standard seismic hazard ap-
proaches (Mortgat and Shah, 1979) or to update the results of the seismic hazard analysis by the observed
data (Egozcue et al., 1991).

In this study a Bayesian method is presented that estimates the probability distribution of the mean
number of occurrences in a Poisson process described by the parameter A, taking into account the previous-
ly defined uncertainties of the input parameters. The parameter A corresponds to the mean number of oc-




currences of a given intensity, but the method can be used similarly if A corresponds to an intensity range
or an intensity threshold. The inherent uncertainty of the parameter A requires a treatment of A as a random
variable. We further assume that the probability distribution of A is proportional to a Gamma distribution
with parameters v and x. This somehow arbitrary choice is justified, because the Gamma function is able
to fit a large variety of shapes and, therefore, does not introduce substantial limitations in the model. The
prior estimate of A can thus be written as (Benjamin and Cornell, 1970):

X

frd) = f—”(gx“"exp (~vA) (3)

where I' is Euler’s Gamma function and v, x are the parameters of the Gamma distribution. The parameters
v and x are directly related to the expectation and variance of A:

E[A\] = 5 and Var[A] = (4)
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We have assumed that the number of occurrences of a ground motion level follows a Poisson process with
parameter A. The sample likelihood function on A, when n occurrences have been observed in the time pe-
riod T, is:

LT, N= )= LT e (am) (5)

n!

where T is the time period of observation and n the number of occurrences in this time period. By applying
Bayes’ rule (Press, 1989), the posterior distribution f” 5, of A is:

)= fﬂMN:n(A‘): NL (AT, N= n)f, (M) (6)
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From formulas (3) and (7) follows, that:
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From formula (8) it can easily be seen that the larger T is, the smaller will be the variance in A, i.e. that the
longer the time period of observation is, the smaller will be the uncertainty in A.

Formula (7) is valid only if the number of occurrences N=n in time T is known precisely. If the sample
is imprecise itself, i.e. if the number n of occurrences can only be estimated with uncertainty, the number
n has also to be treated as a random variable. This means that the number of occurrences N also follows a
probability distribution P[N=n] with n=0,1,,,. The Bayesian estimate (7) has now to be rewritten for the val-
ue of N=n, which yields the weighted Bayesian estimate:

E"[M (v, %) ]= and Var” [A| (v, )] = (8)

HA) = X fyn= o PIN=n] (9)
n= 0

Formula (7) can now be expressed as:



A = 2‘;;}2") **"lexp (- (v+ DA P[N= n] (10)

Combining (8) with (10) yields:
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“~!exp (—v"A) P [N= n] (11)

Formula (11) will be used for the calculation of posterior distributions of the parameter A, if the sample data
are imprecise. The probabilities P[N=n] are calculated from the “Earthquake Site Catalog” (ESC). The giv-
en probabilities p; in the ESC can be interpreted as probabilities of a Bernoulli trial. Then P[N=n] is ob-

tained by a standard Bernoulli trial with varying probabilities p; for each earthquake (Egozcue and Riittener,
1996). The expectation and variance of A is now:

EM(v,0)]= ":ﬁ‘TN) and Var[A| (v, ¥) ] = “E((N) *7;’“’(1") (12)
v+

This result shows that the mean of the weighted posterior distribution is that of the standard posterior dis-
tribution (8), if the number of observations were E(N). But the uncertainty of n influences the variance of
the posterior distributions, i.e. the larger the variance in the number of observations is, the larger the vari-
ance of A will be.

The posterior distribution of the Poisson parameter A allows to calculate both, point estimates of A (e.g.
mean values, modes, median) and interval estimates of A. Point estimates from probability densities, e.g.
the mean of the posterior density of A, give a representative point of the value of A, but do not show the
variance of the obtained results. Therefore, whenever possible, probability intervals should be given to in-
dicate the accuracy of the recurrence rate A. This is valid for the standard Bayesian estimation (with exact
data) as well as for the weighted Bayesian estimation (with imprecise data).

APPLICATION

The developed method is used to estimate seismic hazard for two points in Switzerland: for the city of Zu-
rich, which has a moderate seismicity and where no damaging earthquakes in the historical earthquake cat-
alog are known, and for the city of Brig, which suffered several damaging earthquakes. In the first step,
probability distributions of the ground motion of each individual earthquake are calculated for these two
sites, i.e. the “Earthquake Site Catalogs” are calculated taking into account the observed uncertainties (cf.
figure 2). Since each earthquake can be interpreted as a trial in a Bernoulli process, the number of occur-
rences of a given ground motion level at a site is obtained in the form of a discrete probability distribution.
Figure 3 shows the calculated probabilities versus number of occurrences of intensity VI from the year 1750
for the city of Brig. The peak in the number of occurrences is recognized to be 7, i.e. most probably Brig
experienced 7 times intensity VI in the last 243 years. However, there is a great uncertainty about the num-
ber of occurrences, i.e. all occurrences between 5 and 10 times have a significant probability.

In the second step, the probability density of return periods is calculated using the formula developed
(11). A “non-informative” prior distribution of the parameter A with the condition that return periods in-
crease with increasing intensities are used. The “non-informative” prior distribution is represented by
kx = 1,v = 0 as parameters of the Gamma distribution. This assures that the results are only determined
by the data sample and not by the form of the prior distribution. Representative points of the estimated re-
turn periods, e.g. median values or intervals estimates, are calculated from the probability distributions in
order to draw seismic hazard curves. Figure 4 shows the result for the two sites in Switzerland. Dotted lines
with crosses give median return periods, dotted lines with black points represent the 0.25 and 0.75 bounds



of the probability intervals, and dotted lines with open circles represent the 0.05 and 0.95 bounds of the
probability intervals. Also the results obtained by Mueller and Mayer-Rosa (1980) following a modified
Cornell approach are indicated (by dashed lines). It can be seen that the variance increases with higher in-
tensities, which reflects the short data sample for the bigger earthquakes. It can also be seen that the vari-
ance in the estimated return periods is smaller in Brig than in Zurich. A result of the longer return periods
which are estimated for Zurich. In Zurich, i.e. in a seismic low active region, the time interval of the data
is very short compared to the return periods that are estimated. The variance is generally larger in regions
with a lower seismic activity than in regions with an increased seismic activity, if the data catalog is of a
similar length in time.

Results of the earlier study (Mueller and Mayer-Rosa (1980)) lie within the 90% probability interval
of the Bayesian estimates. But it has to be stressed that for the Bayesian estimation of the seismic hazard
neither seismic sources have been delineated nor earthquake size distribution laws (e.g. Gutenberg-Richter
relation) have been applied. The obtained results purely reflects the past seismicity taking all the uncertain-
ties into account. If long return periods in comparison to the time interval of the data catalog are estimated,
the variance gets very big and the results are almost meaningless. However, it demonstrates that the results
obtained by seismic source methods purely reflects the delineated sources and the defined earthquake size
distribution and cannot be confirmed by the data.
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Figure 3: Probability versus number of occurrences of intensity VI for the city of Brig.

CONCLUSIONS

Earthquake data catalogs and ground motion attenuation laws are the main geophysical input into seismic
hazard analysis. However, most of these input data are affected by large uncertainties. These uncertainties
can be properly represented by probability distributions. Bayesian Statistics is an appropriate technique to
estimate return periods when uncertainties are relevant. A Bayesian model for estimating seismic hazard
analysis has been developed. It takes the uncertainties in the input data into account. The resulting seismic
hazard reflects these uncertainties in probability distributions of the return period. It can be observed that
in regions with low seismic activity the estimated return periods have a greater variance than in more active
regions. Large return periods cannot be determined with confidence, because the historic record is too short,
neither can the results obtained by seismic source methods be confirmed. Additional data (e.g. paleoseis-
mological data) have to be used in order to reduce the spread of the probability interval. However, when
such data are available, they can readily be integrated into the method developed.
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Figure 4: Return period versus intensity for two locations in Switzerland.
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