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IMPULSE SERIES METHOD IN THE DYNAMIC ANALYSIS OF STRUCTURES
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ABSTRACT

The impulse series method has been proposed by researchers from Romania where it has been called
Bukovine method. By means of the first mean value theorem from integral calculus, any Duhamel integral
may be transformed into a sum. By this way all the relationships in linear analysis may be rewritten into
another form.
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INTRODUCTION

In linear dynamic analysis of structures, Duhamel integrals have to be computed. An analytic solution of
these integrals may be obtained only in the case of some particular types of excitations (harmonic input,
pulses). Step-by-step integration leads to a great complexity of calculus. Using the first mean value theorem
from integral calculus one may seek an integration formula for Duhamel integrals.

LINEAR SYSTEMS

SDOF Systems

The following equations of motion that govern the behaviour of a single-degree-of-freedom system and a
multi-degree-of-freedom system are taken into account :

%+ 290k + 0, X =- U (1)

MK} + [CHx} + [K{x} =-[MH{1}u (2)
where X, X, X are respectively the relative displacement, velocity and acceleration of the SDOF system, o, =
angular frequency, 9 = viscous damping factor, i = base acceleration. [M], [C], and [K] are respectively the
diagonal mass matrix, the damping matrix and the stiffness matrix of the MDOF system. The vectors of
relative displacements, velocities and accelerations of MDOF system are denoted as {x}, {x}, {X}.
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Fig.1. Correlation between 1, i and Dirac impulses Fig.2. Free vibrations ;

If the SDOF system is initially at rest, x(0) = x(0) = 0, then the solution of Eq. (1) is Duhamel integral :
x(t) = — £ﬁ(t)h(t —t)de 3)

h denoting the impulse response of system, h(t—1)=exp[-30,(t—1)]sinw,(t-1)/0,, 0, =0,V1- 92,
t a fixed time instant, T = variable of integration..
Let A: {O =ty <ty < ... tp g <ty= t} be a division of [0,t] with t; chosen so that ti(t;) = 0 for i=I,n’ ( Fig. 1).
Neglecting the sign in the front of integral (3) one may write :
x(t) = j:‘ ii(t)h(t-t)dt + fz fi(th(t-t)dt + ... + f
|

n—

i(t)h(t-1)dr “)
1
Using the first mean value theorem (Siretchi, 1985) it result the existence of a; € [t;_;, t;] so that :

[ #ont-1)dr = ht-ay) [ s )

-1
where «; is not unique determined in the interval [t;;, t]. As a consequence of the equality

_[‘i fi(r)dt = u(t;)—u(t;_,), denoting the difference of base velocities u(t;)~u(t;_;) = U; it follows :
i-1

x(t)= > Uh(t-a;) (©6)
i=ln
The relative velocity may be obtained in a similar manner :
. » 9
(0= [a@ht-ndr = Y U;ht-B) )
i=1,n

where 1’1(t —1) is the first derivative of h(t-t) with respect to t and B; € (t;.;, t;]. It should be noted that o, n,

B; depend on variable t, a; = a;(t), n = n(t), B; = Pi(t). The values U; are constant for i=1,n—1 but U, =

U, = f i(t)dt . Taken separately one term from the sum (6) it follows :
x; = Uih(t-a;) =ﬂe’s“’°(t_°‘i)sincoa(t—ai) ¢))
a

It may be seen that x;(t) represents the response of the SDOF system to a free damped vibration, with the
initial conditions x(c;) = U;, x(o;) = 0 (see Fig. 2.).



The total response of the system subjected to ground acceleration may be evaluated as a superposition of (n-
1) free vibrations contributions :

n n

x(1) =Y x; = Y U;h(6;) 9
i=1 i=1

in which 0; = t- o;(t), (see Fig. 2b). Only the last term is a forced vibration x,()=U,(Dh(t-o,). The values o;

are not known. Practical computations have been shown a; lies in the vicinity of the time instants where ii(t)

attains its maximum values on the interval [t;_, t;].

MDOF Systems

Turning to Eq. (2), using the modal transformation {x(t)} = [v]{q}, in which [v] is the modal matrix of the
N-degrees of freedom system and {q} the vector of mormal coordinates, one obtains the displacement
corresponding to the 1-th generalised coordinate as :

N n .
x (=YY mUg;(t-aj) , 1=LN (10
Fli=1
where g = Zvl'vjhr(t), h,(t) =exp(-9,0,t)sinot , r=1,N, m;=mass at the level j, o, and 3, are
r=1,n
respectively the angular frequency and damping ratio in the r-th mode.

NONLINEAR SDOF SYSTEMS

Consider a SDOF system defined by its mass m, damping constant c, initial stiffness ky. The total
displacement x(t) is divided into two parts : an elastic instantantaneous displacement x¢(t) and a plastic
instantaneous displacement x,(t). The stiffness at time t is given by the function k(x,t). Thus it resulted a
mathematical model that was used in author's own papers (Daniliu 1986,1987) :

mX + cX, +k(x, t)x, = —mil (11)
Upon substitutions of X=X - Xp, Xe = X - X, k(x,t)=kg - Ak(x,t), into Eq.(1), rearranging terms and dividing
through by m, the equation of motion of the nonlinear system becames :

X +290 o X+0 2X = —ii + R(t, X(t)) (12)
where cx+kgx, — Ak(t,X)(x—Xp) = R(t,x(1)), 0302=k0/m, 9=c/2oym. By comparing Eq. (12) with Eq. (1),
the solution of Eq. (12) is :
x(t)= ¥ Uih(t-o;) + j: R(z,x(t))h(t - t)dt (13)
i=l,n
Theoretically, the motion of the nonlinear system can viewed as the motion of the initial linear system
subjected to a modified excitation i(t) + R(t,x). Evidentely R(t,x) is not known in advance.

ENERGY ASPECTS

The energy equations will be formulated with respect to the relative frame of reference, where the inertia
force mii is treated as an external force. The following symbols are used : E.= kinetic energy; E = potential
energy; E4= viscous damping energy; E,= hysteretic dissipated energy; E;,= mechanical energy due to the
sum of kinetic and potential energies; E;,= input energy due by the action of extenal force; E,= absorbed

energy equals to the work of external force; k= stiffness of the linear system; c¢= viscous damping
coefficient; c= 2Zm3w,; m= mass.



Linear systems

The total motion of the linear SDOF system consists of (n-1) free vibration and a forced vibrations, see Egs.

(6), (8), (9). For one of these vibrations it may be written :

m)'(iz _ l’nUizh’2 (t - Bl)
2 2

kx?  KUZh(t-a;)
2 2
mUiz

El = ; EL = (14)

Eg=c£xidt=cEUi2h'2(t-Bi)dt; Ei =El = —EL+E +E}

where h"z(t-Bi) is the square of the derivative of the impulse response function, included in Eq. (7). The total
displacement is x(t) = x;(t)+x,(t)+...+x,(t) therefore at a certain time instant the energies of the total motion
are :

E.()=— Zx +—ZlexJ, E, (== ZX += ZZxxJ, (15)

1—1 1 i=1 j=1

Eq(t) = cZ_Ex dt+czz_tx x;dt; i#]

i=1 j=1
where n= n(t), x; and x; result from Eq. (8). The absorbed energy at time t.corresponding to the end of the
ground motion can be expressed as :

E,(te) =Ec(te) +E(t.) +Eq(t,) = Z(E‘ +E! +Ed)+ZZ( X, X +12(xx1+c£ x;dt) (16)
i=l j=1
F U2
Z(E‘+E‘ +Ei) = mz

i=1
in which n,= total number of impulses of the considered earthquake. The increment in absorbed energy
durlng the interval [ti_],ti]a AEa= Ea(tl) - Ea(ti-l) is given by (17), if AXl ).(J =).(i (tl)xj (ti)'—)'(i (tl_l)xl (ti-—l) H

mUz'“'m P Sm.. .k i ..
+Zl:zl:(2Ax X; Ay Axx +cf ixjdt+j=zl(?(xixj)+_2—(xixj)+-E_,xixjdt) a7n
On the other hand integrating over x Eq. (1) one may be written E,(t) = Emﬁ)'(dt =E.+E;+Ey and

AE, = f miixdt = AE; + AE,, + AE, . Applying the first mean value theorem, two formulas are found :
i-1

mU 2

E,(t,)=— ZU h(b‘)+mz ZUU h(b}) AE, = h(b! )+mZUU h(b) (18)
i=1 j=i+l =1

where b) =t - py(t), ] eltitl Bieltigbl, h"(bij)=exp(-8coobij)(coscoabi - 9,sinw,b), 8, =9v1-92.

The time instants bij, tij are not exactly known. If the whole energy induced in a system is not damped or
dissipated it cumulates to the next cycles. Actually, the increment of the absorbed energy AE, contains the
input energy in the excursion i, denoted mUi2/2 and the mechanical energy E(t;.1) = Ec(ti.1) + Ey(t;.;) that
has not consumed in the previous semi-cycle i-1, (see Fig. 3). The increment in input energy AE;, may be
included in the equality AE;, + E(ti.) + E,(tj.1) = Ec(tj) + Ei(tj) + AE; where AE; denotes the increment in
lost energy. Further it results :

mU 2

AE;, === AE +AE, +AE, (19)

in

where the sign "A" denotes the change in kinetic energy, potential energy and lost energy (AE.=E(t))-E.(t;.1))
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Fig.3. Input- output diagram

In general AE, differs from AE; which is equivalent to the presence of a damping that is different from the
viscous damping. The increment in input energy AE;, is the same for all the structures subjected to a certain
earthquake. The increment in absorbed energy is different and AE;, # AE,. The absorbed energy depends on
the structure characteristics 8, ®. Physical considerations suggest when k tends to infinity E, approaches

zero and for k—0 it results E,—0. In Egs. (18) for $=0, h'(bj')=cos0)0bjl therefore AE#AE;,,. The total input
energy on the whole duration of the design earthquake is :

ng U'2
Bia(to) =3, @0
i=1

When AE,-AE>0, the mechanical energy of the system increases, AE;=AE +AE>0. It is an unfavourable
situation since the maximum displacement in the next cycle i+1 will increase. Inversely if AE,-AE4<0 then

the system damps more energy that it absorbs, the amplitudes of the response will decrease (Hangan and
Crainic 1980).

Nonlinear Systems

By integrating over x Eq. (11), using the substitution x= x¢+x;, dx = dx¢tdx,,, one obtains :
.2 2 2
mx .. k(x,t)x X~ dk .. v
ot [k xat+ e [Xtat+ [k xpdt=—[mixat @1
2 ¢ 2 2 dt £ °TP 1)
Ec + Ed + Ep + Eh = Ea
where the last two integrals in the left member side of the equation represent hysteric energy E; and the

potential (elastic) energy is given as Ep(t)=kx62/2.

SEISMIC RESPONSE AS A GENERALISED FUNCTION

The concept of generalized function (or distribution) is more comprehensive than the one of the ordinary
function. Any classical function may be treated as a generalized function. In the domain of generalized
functions seismic acceleration and impulse response function have to be defined on the whole real line :

- 0 ift<Qort>t

u‘u)z{ﬁu) ifo<t<t

where t>0 is viewed as a parameter and 7 is the variable of the functions. Function h(t) is called test
function. Using the relationship between physical systems and distributions and Egs.(3), (6) the result of
applying (1) to h,(t) is expressed in two symbolic forms :

%(t) =<ty (), hy(v) >= [, (Dhy (v = Y Ujh(t-ax)) 23)
i=1

(22)

X(t) =< zn:UiS(t —a;).h, (1) >= [:zn: U;8(t—oh(t)dt = iUih(t—ai)
i=1 i=1 i=l1



in which X(t) is the structure response, 8(T—a;(t)) denote Dirac generalized functions concentrated at the
points T =a;(t) . In both above equations t is constant. Hence for a certain t, in computation of the seismic
response, the continuous base acceleration may be replaced by a series of Dirac impulses applied at the time

instants o;(t). Only for a specified impulse response function h,(1) one may be written :

i, (1) = Y Uid(t— (1)) (24)

i=1
the impulse magnitudes being U; = f i i(t)dr and n=n(t), U,=U(t), U;=constant (i=1,n-1), (see Fig.1).
i-1

The Fourier transforms of X(t), h (r) (1) are given by the following integrals :

+o0 +0 n
X(0) = j %(1)e 1%t ; H(o) = jht (t)e %1 ; U(o,t) = j > US(t—o;(t)e dr = ZU e~ioxi (25)
—o0 —ool 1 i=1
The Fourier transform of the translated impulse response function h(t-t)=exp[-3o(t-t)]sinm,(t-1)/0, is :
F(h(t-1)) = e H(o) (26)

where F denotes the Fourier transform and the receptance H(m)=1/[0)02-m2+j(29m0m)]. By means of
Parseval's equality (Gelfand and Shilov 1983) a similar relationship to Eq. (23) may be derived in the
frequency domain :

X(t) =<ii, (1), h (1) >= 1 U(o,t), H(o)e'™ >= L jU(m,t)H(m)eJ"”‘dm 27
27 2n i

il

Passing to the probalistic approach, i is defined as m[ﬁ] = E[U;]8(t—a;) where E denotes the mean
i=1

operator. The generalized autocorrelation function of the seismic acceleration is obtained from Eq. (24) :

Ry (t),ty) = E[iiyx U] = EZUS(tl al) ZU&(:2 o?) (28)
i=1

where the sign "x" denotes the direct product between two generallzed functions, n;=n;(t;), ny;=ny(t;), ny=n,.
According to the definition of the direct product (Gelfand and Shilov 1983) and inverting the operator with
the sums, it results :

N
Ry (ty,12) = > > E[U;U]8(r, ~a;' 1 -a?) 29)
i=1 1=1

where 8(z,—a,',1, —ulz) is the Dirac generalized function of two variables. If the impulses are
uncorrelated, i.e. E[U;U]=0 if i#l, one may be written :

l‘l] n
Rﬁ(tl,t2)=ZE[Ui2]8(t]—ail,tz—aiz); Rﬁ(t)=ZE[Ui2]8(tl—ail,1:2—aiz) fort=t,=t (30)
i=1 i=1

PROBABILISTIC APPROACH

Turning to the classical random functions the sum (6) is understood in the probabilistic sense. In general the
magnitudes U; are considered normal random variables with zero mean, except Uy(t) which is a random
function. The random functions o;(t) depend on the lenghts of the subintervals [t;_;,t;]. Hence h(t-a;(t)) are

deterministic functions of random functions. The number of impulses is also a random function but with
positive integer values. The mean and the autocorrelation of x are found as :

n; 0y

mx(t)=2n;E[Uih(t—ai)] R, (t;,t) =E| > > U;Ujh(t-«a; Dh(t—a?) 3D

i=1 i=11=1



where T is the mean number of impulses at time t, E=mean operator, n,=n,(t,), and aik=ocik(tk), k=1,2. As
an approximation if U; are uncorrelated E[U;U,]=0, for i#l, and «; are taken as deterministic functions, then it
follows

n fi fi
my (t) = 3 E[U;]h(t-o;) E[xz(t)]=ZE[Ui2]h2(t—-ai)=2Dih2(t—ai) (32)

i=1 i=1 i=1
where Di=E[Ui2] and h2(t-ai)=exp[-29co(t-oci)]sinz[ma(t-oci)]/coaz. The maximum values of h2(t-ai) are
reached when a)a(t-cxi)=2kni1t/2-tan'131, with k=0,+1,42,... and 9,=8/v1- 8 (the points where h'(t-o;)
vanishes). Retaining the value n/2-tan'191=1c/2-yl, one obtains max[hz(t—oci)]=cxp[-291(1t/2-yl)]sin2(n/2-

yl)/maz=B2/ma2. If x(t) is a zero mean process Gy (t)=E[x2(t)]. Presuming that the maximum of the variance
will be attains in the vicinity of the maximum impulse in absolute value, an approximative formula is :

cx“’a"zﬂ D, i=LM (33)

O, Vi-1.M

where max{|Ul|} =Uy; D= E[UMZ] ; the values of the coefficient B are given in Table 1.

Table 1.
9 B
0 1 Another formula is based on the observation that the most defavourable
0.02 0.969260 S 4 3n
0.05 0.925530 situation occurs when o, (t—ay) -7 =5 ; o (t—ayvo) =71 =—:—2—-
0.07 0.897837 and so on. The derived formula is :
0.1 0.858276
171 in( *
e sin(Z —y) .

©a i=1,M
where the sum stops at the maximum impulse taken on its absolute value. Formula (33) overstimates the
standard deviation, formula (34) is more adequate although it referrs to a limit situation. Equation (5) implies
that for a given interval [t; ;, ;] may be aproximatively evaluated as h(t-o;) = p;h(t-t{) + poh(t-15) +...+ p,,.

1h(t-t,;) where 14, 5, ..., T,; are n; points belonging to [t;.;, t;], p, =1ii(t,)/U;and U; = f li'1(1:)d1:. The

values pj, Py, ---» Pp; are bounded between zero and unity and their sum is py+py+...+p,;=1. One may be
established and analogy with the sum of probabilities that gives a distribution function of a random variable.
Let t be the random variable and p, = i(t,) /U; the values of its probability density function fgl(‘[).

One may be written fel(t,) =p;,r=1,2,..,n; If nj>co then it follows :

h(t—a) = f] f,!(1)h(t - t)de 35)

One has reached to an outcome similarly to the computation formula for the mathemathical expectation of a
function h(t-t) of a random variable t (Elishakoff 1983). On the whole interval [0, t] substituting (35) in (6) :

x(t)= 3 U, r‘ £,i(1)h(t —1)dt = EU(‘c)fe(t)h(t—t)dt (36)
i=l,n il
where U(t) = U; and (1) = fy (t) when € (8., t;].
Comparing (36) and (3) the product U(t)fg(t) may be viewed as a random fictitious seismic acceleration
A(7). The mean and the autocorrelation functions take the forms :

m,(®) = [EU@G@hE-Ddt Ryt = [ [PEAG)AG)I - t)h(ty —tp)drdt,  (7)



at the time instants t;, t,. The simplest estimation for fo'(t) would be the uniform density function

fy (1:)—1/At and h(t-o; )—Zt— i h(t — t)dt . Hence the random response is x(t) = Z f h(t-1)dr.
i -1 l—l
After some calculations one may be written :

m, () = ZE[ ] f h(t - t)dt E[xz(t)]ng[%);—}( fl h(t—‘r)dt)z (38)

where the ipotesis E[U;U;] = 0 for i#j has been done. The integral Ii (0,) e ™ sina, (t—t)dr may
i-1

be calculated using the integral tables from literature (Siretchi 1985). However more adequate are the
probability density function that have greater values at the middle points of subintervals [t; , t;].

APPLICATIONS

The accelerograms of two earthquakes have been analysed : 1) the 1977 Bucharest earthquake NOOS record
(17 seconds) 2) the 1940 El Centro earthquake SOOE records (7,8 seconds).

The following magnitudes have been computed : the impulse magnitudes U;, the input energy per unit mass
E;/m; input energy per unit mass and unit time; the averages of the sums of positive and negative impulses
>U;"m", YU; /0", the durations of impulses At;=t;-t; ;. The results are presented in Table 2.

Table 2.

Record U™ (cmis) U (ems) Ey/m(em?s®) Ey/mtgem¥s) XU;/n (emis) SU;/n(emis) A (5)

Bucharest +89.85 -99.71 10,466 615.65 4.870 7.156 0-0.85
El Centro +41.6 -47.2 5,697.5 730.45 8.231 9.707 0-0.4
CONCLUSIONS

Any Duhamel integral may be transformed into a sum of products between the impulse magnitudes U; and

the corresponding impulse response functions h(t-c;). By means of this approach all the relationships in
linear analysis may be rewritten in another form. New formulas (6)-(10), (12), (13), (24)-(30), (31)-(34),
(36)-(38) have been obtained. For time history analysis and spectrum computations a limitation of the
impulse series method is due to the values o; which are not known in advance. The first practical
applications prove the simplicity of this method and its promising capability to be used especially in
probabilistic analysis and energy methods.
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