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ABSTRACT

The Alpha Factor Model and the Multiple Greek Letter method, developed for the probabilistic risk
assessment of nuclear structures, are adapted for general structures subjected to various types of loads
including sesmic excitations, including the seismic ones.
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INTRODUCTION AND PRELIMINARIES

The so-called common cause failure (CCF) in redundant systems of nuclear power plants (NPPs) has been
intensively investigated since the mid 70s. Various types of models and methods were developed in
connection with this concept, mainly with the US nuclear program (Fleming, 1975; Vesely, 1977
NUREG/CR-4780, 1988-1989). We mention, among them, the 8-Factor method (BFM), the a-Factor model
(aFM), the Multiple Greek Letter (MGL) method, which are extensively presented in NUREG/CR-4780
(1988, 1989). The latter two are extensions of the BFM. All these methods (and other ones, too) fall in what
is called dependent failure analysis (Ballard, 1989). On another hand, the concept of seismic fragility was
also developed in the same area of PRA of NPPs. The power and elegance of the fragility models determined
us to propose some approaches for using them in the PRA of more general structures (Vulpe et al., 1990,
1991). The problem of taking into account dependence relations among component seismic fragilities was
less considered in the literature, e.g. by Yamaguchi (1991), but we also proposed an approach to it in (Vulpe
et al., 1995). In this paper we develop some stochastic dependence models - presented in (Carausu ez al.,
1991; Vulpe et al., 1993) - with more attention paid to the CCF concept. We have found as the most
appropriate of the CCF methods to be applied in reliability and seismic risk evaluation of general structures
the «FM and MGL. Some preliminaries on these methods are unavoidable, and we are going to recall them
briefly, according to the report NUREG/CR-4780 (1988, 1989).

The reliability / seismic risk assessment of (sub)systems in NPPs based on the analysis of common cause
(CC) events involves the assumption that several similar components behave in a similar way.
Probabilistically speaking, all the components in a CC group can fail due to a common cause, hence they

share a common total unavailability denoted by ©.. If such a CC group consists of m components, a



basic event occurs when k out of the m components fail (1 <k<m). Clearly, it is possible that no
component fails : k=0. The probability of such an event is denoted by ~ ©,. It follows that the

unavailability of k& components in a CC group is given by

m
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The multiple Greek letter (MGL) model is an indirect multiparameter nonshock model whose m parameters

are Q.,B=p,,Y=P3,--+, ... =p,. By convention, p,=1, pp,,=0. In this model, the

unavailablity of £ components is given by
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The unavailabilty of the whole group (or subsystem) depends on the failure criterion for it. For example,

if m=3 and the group becomes unavailable if at least two components fail, then
0s=3(1-P)207 +2B(1-¥)Q, +BYO,. €

In fact, Eq.(3) gives only an approximation for Q. obtained by neglecting the terms of order >3 in

Band ©O,.

The oFM is also a multiparameter model with m+1 parameters, namely 0O, with the same meaning as

in MGL methodand «,, «,, ..., «, where a,= the fraction of the total frequency of failure events

that occur in the system involving the failure o k components due to a common cause. The m parameters are

clearly >0 and they also satisfy the condition «,+e,+...+a,=1. To illustrate the diference
between MGL and oFM on the preceding example with m=3, we give the expressions of the

unaivailabilites ©0,, k=1,3 (according to MGL in column 1 and to oFM in column 2, respectively):
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where «,=a,+2a,+3a, isanormalizing factor. In general, the partial unavailability of £ components
in the oFM is given by



O, =———*o. ., k=1,2,...,m. )
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In the same case of "2 out of 3" system failure / success, denoted by [2/3] , the system unavailability

under the aoFM is

0, | ai
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Bayesian estimates for the parameters of the MGL model and the oFM are given ir: Vol.2 of (NUREG/CR-
4780, 1989).

ADAPTING oFM AND MGL TO REDUNDANT STRUCTURAL SYSTEMS

mmon C Failures in ral em

As already mentioned in the Introduction, the CCF concept was considered mainly in redundant equipment
(sub)systems of NPPs. However, several interpretations of this concept can be met in the literature. Roughly
speaking, the components that can fail due to a common cause are similar, that is, they are equipment units
of the same type (motor operated pumps, for example), of the same manufacturing and sharing the same
technological function. If we attempt at introducing CCF-like models for general structural systems, we have
to look for some analogies. For a frame structural system consisting of column and bar elements, we suggest
that the elements of the same type (as regards the geometrical and material properties) placed in equivalent
positions from the point of view of system topology and loading conditions could be grouped in a CCF group
or CCF class. This is only a possible approach, maybe too simplist; but it is based upon the ways the
dependence relationship is considered, e.g., by Kaplan e al. (1981), Kaplan (1935), Apostolakis ( 1989)

a.0.

Let us consider a structural system S consisting of 7 components. The components will be labeled by a
positive integer, hence the set of components is represented by C¢=1{1,2,..., n}. Clearly, The
system S itself cannot be identified with the set C of components, since the latter ones can differ as regards
their properties and position/role in §. This remark induces the necessity of partitioning the set C in

subsets of "similar" components:

X
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The system is assumed to fail according to m possible failure modes (or fundamental mechanisms). A

failure mode M; (j=1,2,..., m) is,infact, asubsetof m; potentially failing components; hence

Mj={01,j’02,j""'gm]’,j}CC. (8)

It will be necessary to consider the subclass of components of type / that enter in the failure mode ¥;,

that is, C,;;=C;1M; with cardC;;=«x 1<x;;sx;=cardC;. An alternative (and more

ije

suitable) representation of a failure mode would be as an ordered k - tuple of nonnegative integers :

M;= [k ;K ;... Kk ;] with 0<k; ;<x;. )]

1

The difference between representations (8) and (9) of a failure mode is clear: the members of the set in the
r.h.s. of Eq.(8) are component labels in the set C, while the entries in the k-vecter of Eq.(9) are numbers

of the components from each similarity class C; that enter in the failure mods M;. It is clear that

k; ; in Eq.(9) are equal to «x;; = cardC;.

Let us illustrate the concept of CCF classes on the example of the (redundant) frame structure in the
following figure:

11/4 12/4
5/2 6/2 7/2
8/3 9/3 10/4
1/1 2/1 3/1 4/2

Fig.1 Frame structure with CCF classes
i/k : i = component label in C
k = CCF class

It is (probably) no need to explain the way the CCF classes were established; however, let us notice that the
column elements 1, 2, 3 with one story above them are in class I, the other columns 4, 5, 6, 7 are in
class 2, the beams possibly subjected to live loads 8, 9 are in class 3 and the other beams 10, 11, 12

are in class 4. Hence, for this example frame structure we have «x =4 . One of the many possible failure
modes of such a structure is the "chain mechanism" consisting in the failure of all the columns of the first

level. Such a mechanism would then be M, = {1, 2, 3,4} according to expression (8), respectively

M, =[3 10 0] according to expression (9).



Alpha F r and MGL M for tural Failure Modes

In view of the previous discussion on the CCF classes in a structural system, it follows that the total
unavailability (or probability of failure) of a component cannot be the same for all of them in the system;

instead, the similarity of the components in a CCF group or class allows to assign the same ©, to all the

members of such a group. More exactly,

Q. ;=Problk fails, ke C;], i=1,2,..., K. (10)

This total failure probability, specific to each of the k CCF classes, has to be estimated from statistical
evidence and/or experimental evaluations for the type of structural system under analysis. Next, an aFM
should be considered at the level of each CCF class C;. According to Eq.(5) :n the preceding section,

the partial unavailability of £ components in the CCF class C; will be given by an adapted version of this

equation:
0 a
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The o factors «,, «,, ..., &, associated to every CCF class C; have to be estimated using the

Bayesian procedure given in Vol.2 of (NUREG/CR-4780, 1989). For a certain failure mode »; of the
form given in Eq.(9), we have to take - in Eq.(11) - ¢< k; ;. Now, the failure probability of the k; ;

components of the subclass C,; within the failure mode M; will be given by an equation similar to
Eq.(6).However, it has to be taken into account the structure of the F-mode as in Eq.(9) instead of the

simple failure/success events of the form [k/m] considered in the homogeneous (sub)systems of NPPs.

Obviously, our concept of a failure mode essentially involves its nonhomogeneity. In fact, a failure mode
in a structural system is a nonhomogeneous complex event as regards the CCF classes involved in it. In the
terminology "k out of m" specific to risk studies in NPPs, an F-mode could be assimilated to a x-tuple of
CC failures:

Mj= [[kl,j/Kl] [kz,j/'(z] P [kK,j/Kx]]' (12)

Of course, certain subclass numbers k; ;=x;; can be = 0 (as in the previous example); the

corresponding subclass events will be impossible, that is, [k; ; /x;1 =@ since C;;=e. Now,a

probability or frequency has to be evaluated for each failure mode ;. The appropriate way to do it

would consist in formulating an adapted version of the MGL method. The ground for such an approach lies



in the nature of the MGL parameters which are factors on the fotal component unavailability ©,. Butwe
are going to apply them on the total unavailabilities associated with CCF classes, thatison 0O, ;'s as
given in Eq.(10), taking into account the event structure of an F-mode given in (12). The unavailability

associated to a failure mode M; can be obtained as follows:

where Q. ; isa k-tuple whose components are O, ; given by Eq.(10), p; is also a k-tuple whose

entries are the MGL coefficients given by

0 if k; ;=0
p; = k; 5 5 . > (14)
k; -1 II Pe) (1 - pki,j+1) if k;;+0
(ki.j_l) =
the operation * is defined by
a=[a, a ... al Ab=[b b, ... bl =axb=[ab a,b, ... b1, (15)

and Q, is a scalar-valued operator (or functional) that gives an approximationto Q(M;) . Infact, Q,

turns the x-tuple p;*Q, ;=Q; = [le,j Q, ;- O, ;] toa scalar as follows:
x ki ; K. .0
Q.00 = | TT 3 (") el (16
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where [...], denotes the truncation up to order v of the (polynomial) expression between the
brackets, by sorting out the terms of order > v in p, =B, P53 =¥, .- . Ppaxx,-v+2 @aNd O ;. Letus

remark that the vector Q. is just the vector with probability components associated to M, that is,

Q;=Prob(M;) with M; as given in Eq.(12). Equations (11) and (13) thru (16) are obviously
extensions of the corresponding ones given in Chapter 3 of NUREG/CR-4780 (1988), where there are not

considered distinct CCF classes within a (sub)system in an NPP. It still remains to check up to what degree

the above presented approach to defining CCF classes in a general structural system is realistic.

Remark. Equation (13) and (16) - together with the other ones that are involved - approximates the
probability of a failure mode under the hypothesis that failures in different CCF classes are independent,



besides that, af most k; ;= «;; failures are taken into account in each class. The exact probability of a

failure mode of the form (12) - under the same assumption of independence between the failure in distinct

classes - will be given by

o) =J[y; with y,=% & , (17)
i=1

where ©, ; are given by Eq.(11) and (";’)‘ denotes the number of combinations reduced under the

condition ¢ ;€ C;;.

A Numerical Example

We are going to apply some of the just presented formulas to the failure mode M, of the structure
presented in Fig.1. The already mentioned chain failure mechanism for such a structure is
M, =[3100]. The corresponding event structure of this mode - see Eq.(12) - is

M, =[[3/3]1 [1/4] [0/2] [0/3]1]- According to the values for ©O,, 8 and y suggested by
Fleming et al. (1983) as giving rather accurate approximations under operator [...], we take
p,=B=0.1, p,=y=0.9 and O, ,=0.06, 0, ,=0.04, Q,,=0.05, O, ,=0.03. . The

selected values for the o factors assigned to the four CCF classes are given in

Table 1. «FM parameters for CCF classes 1, 2, 3, 4

CCF class i Size x; o, o, o, o, o,
i=1 3 0.3 0.4 0.3 - 2.0
i=2 4 0.3 0.4 0.2 0.1 2.1
i=3 2 0.3 0.7 - - 1.7
i =4 3 0.2 0.6 0.2 - 2.0

On the base of these numerical data, we calculated the matrix

.002 .0057 0 O
.012 .,0051 0 O
.027 .0038 0 O
.000 .0076 0 O

[Qg,i]j= , J=1. (18)



The last two columns in this matrix are completed with zero entries since the CC classes 3 and 4 do not enter

in M,. The reduced binomial coefficients that occur in Eq.(17) are the entries of two vectors

corresponding to classes / and 2, namely b, = [0 0 3 017, b,=[1 3 3 11T whose dot product with
the non-zero columns in matrix (18) give y,=0.027 and y,=0.0438, respectively. The resulting

unavailability associated to failure mode M, - according to Eq.(17) -is Q(M.) =0.0011826.

Sesmic Risk Assessment by oFM and MGL Methods. The adapted versions of «FM and MGL methods we

have just presented render so-called unavailabilities associated with certain failure modes. This terminology
is "borrowed” from the NPP risk analysis, but it is not directly connected with the seismic risk evaluation.
The concept of seismic fragility (and the models/methods based upon it) has to be combined with these
methods, resulting in specific procedures for evaluating the seismic risk of structural systems. Although it
was introduced about 15 years ago in probabilistic seismic safety studies for NPPs (Kennedy e al., 1980),
even in this area a limited amount of observed/experimental fragility data is available. Attempts to integrate
these adapted extensions of the B factor model (BFM) with the seismic fragility concept and techniques will
be an object of our future research work. It will be also necessary to take intc account the correlation
between components in different CCF classes but entering in the same failure mode; in other words, a
correlation matrix should accompany a failure mode as given in Eq.(12).
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