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ABSTRACT

The development of control devices and systems for civil structures has been based primarily upon a build-
and-test approach. In this paper, the potential benefits of also employing a computational mechanics approach
for the design and development of these critical elements in modern protective systems is explored. To
illustrate the approach three specific device types are examined, including passive viscoelastic fluid dampers
and metallic plate dampers, and active piezoelectric composite elements. The computational approach is used
to characterize the overall force-deformation response for each of these devices. In the process, additional
information is also obtained that is often useful for design purposes, including estimates of durability and, in
some cases, feasibility of a given design concept. Consequently, it would appear that an increased emphasis
on a computational mechanics-based approach would prove beneficial to the successful implementation of
structural control technology.
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INTRODUCTION

In recent years, considerable advancements have been made in the development of devices and systems for
the passive or active control of civil engineering structures. This progress has been achieved by following
a program that relies primarily upon physical experimentation. In particular, a build-and-test approach has
generally been adopted for device development. The macroscopic force-deformation models, required for use
in an overall structural analysis, are then constructed directly from experimental data which must be obtained
for each specific device configuration. Device durability, and, in some cases, feasibility are also evaluated
on the basis of laboratory testing. While the importance of quality physical experiments certainly cannot
be questioned, the primary objective of this paper is to examine the potential benefits of also pursuing a
computational mechanics-based approach for the design and development of these control devices.

The application of computational mechanics to three specific devices is discussed below in order to illustrate
the utility of such an approach. Included in the presentation are investigations on a viscoelastic fluid damper, a
triangular plate metallic damper, and a piezoelectric composite element. Distinct computational methodologies
were developed specifically for each device. First, results from recent work on a viscoelastic fluid damper



(Makris et al., 1993, 1995) are reviewed. For this case, a boundary element method was developed to
characterize the dynamic stiffness of the device. Next, the response of a triangular plate metallic damper is
examined by employing a simple finite deformation beam idealization, together with a two-surface constitutive
model for structural steel under stabilized cyclic loading (Dargush and Soong, 1995). Finally, the behavior
of a proposed piezoelectric composite element for structural applications is studied through the development
of a quasistatic boundary element formulation. After examining these three applications, some remarks are
provided concerning seismic design and the potential benefits of complementing the present device design and
development process with a computational mechanics approach.

COMPUTATIONAL MECHANICS APPROACH

Generic Process

While there is a wide range of materials and geometric configurations that are applicable for structural control
devices, an analysis of the performance based upon a computational mechanics approach can be viewed as
a generic process. The following stages can be identified in this process: problem definition; constitutive
modeling; theoretical formulation; numerical implementation; numerical analysis; design implications.
However quite distinct computational methods will typically be required for each particular device type, as
will be seen in the following examples.

Viscoelastic Fluid Damper

As a first example, consider the cylindrical pot viscoelastic fluid damper illustrated in Fig. 1 that has been
studied in Makris et al. (1993, 1995) from a computational mechanics perspective. The damper consists of
inner and outer stationary cylinders of radii 3 and r», respectively, with a moving hollow cylindrical piston
of intermediate radius ;. A polybutane fluid occupies the space between the inner stationary cylinder and the
piston as well as the space between the moving piston and the outer cylindrical boundary of the damper. With
reference to Fig. 1, the geometric dimensions of GERB damper Type RHY-40/V50/HS0 are: r; = 0.084m,
ro = 0.150m, r3 = 0.018m, H; = 0.230m, Hy = 0.060m, and H = 0.370m.

Fig. 1 Viscoelastic fluid damper geometric definition

For harmonic input, the dynamic stiffness of the damper is the ratio of the amplitude of the resulting force
P, to the imposed displacement Uy. Accordingly, the dynamic stiffness of the device is K* = Py/U,. A
complete description of K*, in terms of the stiffness magnitude and phase angle, as a function of the frequency
can be used to characterize damper behavior under general time-dependent excitation.



The usual approach followed in the structural control literature involves determination of the dynamic stiffness
directly fromphysical experiments on the damper. In fact, a series of such tests was conducted to measure this
response. In each test, the damper piston was subjected to either vertical (axial) or horizontal (lateral) motion
of specific amplitude and frequency. The storage and loss stiffnesses of the damper were then determined
from records of the force needed to maintain the imposed motion by assuming linear steady-state behavior.

Alternatively, in Makris et al. (1995), a computational mechanics based approach was developed. A complex-
derivative Maxwell constitutive model was used to characterize the polybutane fluid over a broad frequency
and temperature range. At any reference temperature 7, under the assumption of infinitesimal incompressible
deformation, a scalar version of the model can be written:
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where 7 and + represent the shear stress and strain rate, respectively, while A, v, and u are complex-valued
material parameters. As indicated, both A and g are functions of temperature, and the symbol d” /dt” denotes
a generalized derivative of order v with respect to time. A Marquardt algorithm was used to determine all of
the required material parameters from cone-and-plate viscometric test data.

The linearity of the applicable governing equations makes the boundary element method (BEM) an attractive
approach for the numerical solution of this problem. Using the governing equations, along with an appropriate
reciprocal theorem, the following integral representation can be established for excitation at frequency w:

Cij(§Hvi(;w) = /S[G’;j(:v,f;w)ti(x;w) — Fij(z, & w)vi(z; w)]dS(z), (2)

where the integration is performed over the bounding surface S of the damper fluid. In the above equation,
v; is the velocity, while ¢; represents the surface traction. The point ¢ is the location at which the velocity
is determined, whereas z identifies the integration point which varies all along the surface of the body. The
kernel functions G;; and F;; are derived from the infinite space fundamental solutions of the governing
equations, which include the inertial contributions. The remaining constant tensor C;; depends only upon the
local geometry at £. It should be noted that Eq. (2) involves surface velocities and tractions only. Volume
integration has been completely eliminated. Consequently, a boundary element analysis requires a mesh only
on the surface S. Details of the formulation can be found in Makris et al. (1993, 1995).
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Fig. 2 Viscoelastic fluid damper frequency response. a) magnitude; b) phase angle



Numerical results obtained from the developed boundary element method for the viscous fluid damper are
displayed in Fig. 2, along with the data obtained from physical experiments. The correlation is quite good
throughout most of the frequency range 0-30Hz. However, the computational model tends to overpredict the
magnitude of the device stiffness, and at the higher end of that range, the phase angle is also somewhat in error.
While errors of this order may not be significant for design purposes, it is useful to attempt to identify their
origin. It appears that the as-built dampers do not dissipate as much energy as theoretically possible under
idealized linear behavior. This may be due to imperfect contact between the fluid and damper, to nonisothermal
straining, or to localized finite deformation effects for which the present method does not account.

Figure 2 also contains curves obtained from a simplified computational approach in which a zero-frequency
boundary element analysis is combined with the frequency variation inherent in the complex-derivative
Maxwell constitutive model. The close correspondence between these curves and the dynamic BEM data
points indicates that inertial effects are negligible in the frequency range of interest and that use of the
simplified approach is appropriate.

Metallic Plate Damper

Metallic plate dampers, when incorporated into a structure, provide one of the most effective energy dissipation
mechanisms available during an earthquake. Increasingly, these devices are applied in the seismic retrofit
of structures which are found to be deficient. The design of these devices, however, has been largely based
upon experiments and macroscopic modeling. In order to gain more insight into the response behavior of
metallic plate dampers, a microscopic mechanistic approach was developed in Dargush and Soong (1995), and
is summarized below.

In particular, consider the triangular plate metallic damper as developed by Tsai et al. (1993), which consists
of N identical triangular structural steel plates positioned in parallel and typically installed within a frame bay
between a chevron brace and the overlying beam. The base of each triangular plate is welded into a rigid
base plate to approximate a fixed end condition, while a slotted pin connection is employed at the apex to
approximate free movement in the vertical direction. As a result of this configuration, the damper primarily
resists horizontal forces P, associated with an interstory drift A, via uniform flexural deformation of the
individual plates. Thus, it is appropriate to examine a single cantilevered plate of thickness 4, length L, and
base width wo, subjected to a load P/N applied at its free end as detailed in Fig. 3. Note that coordinate axes
x,vy, z are defined on the undeformed midsurface of the plate. 4
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Fig. 3 Metallic plate damper problem definition.
a) geometric approximation; b) beam model

Under certain conditions (e.g., major earthquakes), the interstory drift A may become comparable in magnitude
to the damper plate length L. In these situations, the effects of finite deformation on damper response cannot
be ignored. A simplified approach, which essentially involves writing the equation of moment equilibrium in
the deformed configuration, is adopted. First an intrinsic £, n coordinate system is introduced, as shown in



Fig. 3, which deforms with the beam axis. Also defined in that diagram is 6, the angle between the z-axis and
the tangent at £. As a simplification, the effects of shear deformation and the axial extension of the midsurface
are ignored. Then, strictly from kinematic considerations,

& 13 _ '3 _
0(6) = /O wd;  a(€) = /0 cosbdf;  y(€) = /0 sin 0 (3a,b,¢)

€=K7. (3d)

With finite deformation, the curvature « is no longer constant along the length of the plate. Consequently, at
each instant of time, a nonlinear boundary value problem (BVP) must be solved to determine the unknown
curvature function. This BVP requires satisfaction of the moment equilibrium equation

P B U)o(L _ é-) +h/2
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which now varies with £. In addition, the free end deflection condition y(L) = A must be accommodated.

In establishing the stress o in Eq. (4), a nonlinear constitutive model for structural steel must be employed.
For this application a two-surface model with both kinematic and isotropic hardening is developed to represent
behavior under stabilized cyclic conditions. Details are provided in Dargush and Soong (1995). An
approximate numerical solution of the BVP can be obtained by collocating at a small number of nodes along
the beam axis. The solution consists of the nodal values of the curvature and the total force P for a specified
enforced displacement A. The response is, of course, history dependent due to the material nonlinearity.

For a specific example, consider the triangular plate damper 2B2 studied by Tsai et al. (1993), with N = §,
h = 36.1lmm, L = 304mm, and wo = 133.3mm. Experimental results are presented in Fig. 4a for a cyclically
increasing displacement-controlled component test. The pseudoangle v in that diagram represents A/ L. For
the numerical simulation, constitutive model parameters were determined from the data presented by Cofie and
Krawinkler (1985) for cyclic response of structural steel. The resulting force-displacement response prediction
for the cyclic loading is provided in Fig. 4b, plotted to the same scale as the experimental data. Notice that the
shapes of the hysteresis loops are quite similar, and that the estimated force in the damper at ¥ = 0.30 is within
15% of the measured value. Also of interest is the increasing stiffness of the device that becomes apparent for
v > 0.20. This is due to the effects of finite deformation, which become ever more significant as v increases.
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Fig. 4 Metallic plate damper cyclic response for specimen 2B2.
a) experimental (Tsai ez al., 1993); b) numerical



The numerical model also provides information concerning inelastic strain histories that can be used to estimate
fatigue life under quasistatic conditions. The traditional approach for low-cycle fatigue analysis utilizes results
of uniaxial tests run to failure at various levels of the cyclic strain range. For a wide range of metals, the
relationship between the plastic strain amplitude (Ae,/2) and the number of strain reversals to failure (2Ny)
approximates a power law. This so-called Coffin-Manson relationship can be used, in conjunction with
low-cycle fatigue data compiled by Boller and Seeger (1987) to estimate fatigue life. From an analysis of
damper 2B2 with a constant cyclic displacement amplitude of 55mm corresponding to v = 0.18, the maximum
inelastic strain range is approximately Ae¢, = 0.04. The predicted life is approximately 35 cycles. This simple
approach appears to provide at least a reasonable order-of-magnitude guide to anticipated life, which could be
useful in preliminary damper design. Additionally, it should be recognized that plastic strain range is the key
parameter in determining damper durability, not the macroscopic variables P and . Additional information
is provided in Dargush and Soong (1995).

Piezoelectric Composite Element

As a final example, consider a piezoelectric composite element for potential application in an active structural
control system. Two different design concepts, involving extension-type and shear-type piezoelectric layers,
are illustrated in Fig. 5. A preliminary investigation, utilizing typical beam assumptions, indicated that the
shear-type composite element might provide some distinct advantages, however a more detailed continuum
mechanics analysis was in order to assess the feasibility of these members for civil structural applications.
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Fig. 5 Piezoelectric composite element geometric definition.

Since the later stages of the 19th century, it has been known that materials of certain symmetry classes exhibit
a direct piezoelectric effect in which an electric polarization is produced by and in proportion to a mechanical
strain. On the other hand, the converse piezoelectric effect concerns the development of strains in proportion
to an applied electric polarization. For the converse case, the constitutive model for a piezoelectric material,
undergoing infinitesimal deformation, can be written (Cady, 1946):

oij = cijri(ert — dmriEm), (5)

where o;; and €;; are the stress and strain tensors, respectively, and the electric field E; = ¢; with
¢ representing the electric potential and the comma symbolizing differentiation with respect to spatial
coordinates. Additionally, c;;x: is the usual elasticity tensor, while d;;x are the piezoelectric constants that
determine the coupling between the electric and deformation fields.



Notice that the form of Eq. (5) is similar to that for the more familiar thermoelasticity theory, except that the
coupling in Eq. (5) involves a third order tensor d;; rather than a second order tensor of thermal expansion
coefficients. The third order nature of this coupling tensor precludes the appearance of piezoelectric effects
in materials belonging to many high symmetry classes. For example, isotropic materials cannot exhibit
piczoelectric behavior. Naturally occurring piezoelectric materials include quartz and Rochelle salt, while
many engineering applications utilize synthetic piezoelectric polymers (e.g., PVDT) or ceramics (e.g., PZT).

A boundary element formulation can be developed for the piezoelectric composite members shown in Fig. 5
in the following manner. First rewrite Eq. (5) in the form:

oij =05; — 0%, (6)

with of; = cijriex and initial stress of; = cijkidmriEr. Then, consideration of equilibrium yields
aicj,j + f,? =0, (7)

with f? = o7, ;. Utilizing the Betti reciprocal theorem, the boundary integral representation for the
displacement u; becomes

Cis(Euil€) = /S (Gis(z, E)(2) — Fij(a, )us(2)]dS(z) + /V Gis(@ ) (@)dV(z),  (8)

where G and Fj; are the anisotropic elastic kernel functions, and ¢; is the traction associated with of;. As
in Eq. (2),  and z represent the collocation and integration points, respectively, while the tensor C;; depends
upon the local geometry. Finally, assuming that the electric field is constant within each piezoelectric layer,
the following boundary-only formulation obtains:

Ci;(€)ui(€) = /S[G,-,-(a:, Oti(z) — Fij(z, §ui())dS(z) + of; /S[Gij(x, One(2))dS(z),  (9)
and a multiregion BEM can be readily constructed for the composite elements shown in Fig. 5. In Eq. (9), ni

represents the outward normal vector to the surface S(z).

Results of a comparative nondimensional BEM analysis of the two different design concepts is provided in
Fig. 6. The deformed shapes obtained, using relative material properties for the extension and shear-type
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Fig. 6 Piezoelectric composite element deformation response.



piezoelectric layers based upon typical PZT values, indicate the clear superiority of the extension-type concept.
Close examination of the shear-type composite element response reveals that plane sections do not remain
plane after deformation, and thus the preliminary investigation based upon beam bending behavior is invalid.

In addition, however, the feasibility of even the more favorable extension-type element must be examined.
Although PZT piezoelectric ceramics are very effective transducers of electrical energy input into mechanical
work, the present technology limits the electric field E; and piezoelectric strain dii; Fy in such materials to
approximately 20kV/cm and 0.001, respectively. This severely restricts the potential of PZT ceramics in civil
structural applications. In particular, relatively thin piezoelectric layers will not have sufficient stiffness to
control the relevant deflections in typical structural members.

CONCLUDING REMARKS

For each of the three cases discussed above, the objective of the analysis is not only to develop a macroscopic
model suitable for design purposes, but also to utilize the method to gain further insight into anticipated device
behavior. For example, dynamic stiffnesses obtained from the numerical analyses of the viscoelastic fluid
damper correlate quite well with those determined via physical measurement. In addition, the analysis suggests
that some attention should be directed toward possible slippage along fluid-solid interfaces. In the triangular
plate metallic damper, good agreement is again obtained with experimental data, but useful information is
also provided concerning durability. In the third application area, proposed piezoelectric composite element
designs, involving extensional and shear modes, are compared, and then evaluated for application in large-scale
structures.

In a structure designed or retrofitted with a seismic protection system, the safety of the structure and its
occupants depends to a significant degree upon the performance of the control devices. Thus, these devices
become critical elements in the overall structural system, and should receive a significant amount of engineering
attention, particularly when new materials or technologies are involved. Meanwhile, it has been illustrated
that a detailed computational mechanics investigation of passive or active control devices can almost certainly
lead to a better understanding of their anticipated structural response. For the three dampers considered
here, this approach also resulted in the development of models for macroscopic device performance, and the
identification of several outstanding design issues. Based upon the results of these studies, and in light of the
critical nature of seismic protection systems, it would appear that an increased emphasis on a computational
mechanics-based approach would prove beneficial to the successful implementation of structural control
technology.
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