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ABSTRACT

This paper presents the results of a study performed on tuned mass dampers (TMD) and their generaliza-
tions - multi-tuned mass dampers (MTMD) and active tuned mass dampers (ATMD). Correspondence
between the design of a TMD for a SDOF structure and a certain mode of a MDOF structure is drawn to
simplify TMD design to control a single mode of a damped multi-modal structure. An example is given
to illustrate the design procedure. Investigations are made for controlling multiple structural modes
using MTMD. Regarding ATMD, a recently proposed acceleration- and velocity-feedback algorithm is
simplified with practical modifications.
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INTRODUCTION

The concept of tuned mass dampers (TMD) dates back to year 1909, when Frahm invented a vibration
control device called dynamic vibration absorber. Ormondroyd and Den Hartog (1928) showed that by
introducing damping in Frahm'’s absorber, its performance can be significantly improved. Den Hartog
derived closed form expressions for damper parameters which optimize the steady-state response of an
undamped single-degre-of-freedom (SDOF) structure-absorber system subjected to harmonic excitation
acting on the structure.

TUNED MASS DAMPERS

A schematic representation of a damped vibration absorber or so-called tuned mass damper (TMD) is
shown in Fig. 1. The equations of motion of this SDOF structure-TMD mechanism are given as:

MX(t)+ KX(t) - [e{2(t) = X()} + k{z(t) = X(1)}] = P(t) (1)
mi(t) + efa(t) — X(8)} + k{a(t) — X(2)} = p(t) (2)
where x:  Damper mass to main mass ratio, p = W
P(t): Force acting on main mass. For base excitation with acceleration 7,(t). P(t)=—Mz(1).
p(t): [orce acting on damper mass. It is given as:

p(t) = 4t P(t) for base (earthquake-type) excitation
0 for main mass (wind-type) excitation

To facilitate further discussion, the following additional notations are introduced:



w: Frequency of a harmonic excitation.
Q:  Natural frequency of main mass, ! = \/-1{(7.

we: Natural frequency of damper mass, w, = ;’;-
g1: Ratio of excitation frequency to main mass natural frequency, g; = £. For MDOF structures,
g1 = =, where (2, is the first modal frequency of the structure.
f: Frequency ratio, f = %.
(s: Damping ratio of TMD.
¢: Damping ratio of main mass.
Absorber Mass

Fig. 1. Damped Vibration Absorber Suggested by Den Hartog (1928)

For undamped main structure, optimum values of TMD parameters are given as:

TMD parameter Harmonic main mass excitation Harmonic base excitation
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TMD Design for Damped Structures

In the presence of damping in the main mass, the equation of motion of the main mass, Eq. (1) is
modified by adding the term C X (t) to the left-hand side. No closed-form expressions can be derived for
the optimum damper parameters, however, they may be obtained by numerical trials. In a numerical
trial approach, several combinations of damper parameters (; and f are investigated in a systematic
manner until the combination which minimizes the higher response peak is reached. This approach
was used by Randall et al. (1981) to develop design graphs for obtaining optimum damper parameters
for damped SDOF structures under main mass excitation. Warburton and Ayorinde (1980) tabulated
numerically searched optimum values of absorber parameters for certain values of structure parameters.
Rana (1995) developed tables of numerically searched optimum damper paramerters covering a practical
range of structural parameters for harmonic main mass and base excitations. For a general N DOF
damped structure-TMD system with a TMD placed at the jth floor of the structure, the equations of
motion, for a typical rth floor mass, can be written as:

M, X (1) + C. X, (1) + K, X, (1) = 6,5[c{a(t) = X.(2)} + k{z(t) — X, (t)}] = P.(t) (3)
where { 0 r#j
0,j = .
1 r=y
and for the damper mass: .
mi(t) + c{a(t) — X.()} + k{e(t) — X (1)} = p(t) (4)
where p(t) = o P %5(t) for base excitation
0 for main structure excitation

If TMD is to be designed to control ¢th structural mode with modal properties M;, K; and Cj, the

design problem is essentially similar as that of designing a TMD to control a SDOF structure. For the
ith structural mode-TMD system, equations of motion can be written as:

Mijit) + Cry(t) + Ky (1) - ¢iile{(2(t) = X;(0)} + k{z(t) - X;(1)}] = Pi(t) (5)



mi(t) + c{&(t) — X;(1)} + k{z(t) — X;(t)} = Ap(t) (6)

where A is zero for main mass excitation and one for base excitation and

Pi(t) = Q:Trﬂ(t), P(t) being the load vector acting on structure.
y(t) Generalized displacement of ¢th mode.

Comparing Eqs. (5) and (6) to equations of motion for SDOF structure-TMD system, Egs. (1) and
(2), one can observe that these two pairs of equations differ on two accounts, namely, the presence
of the term ¢;; in Eq. (5) and the presence of term X;(t) in stead of y(¢) in both Egs. (5) and (6).
However, if the structure’s ith mode shape vector is normalized with respect to its jth element which
corresponds to the TMD location (jth floor), ¢;; becomes unity and Xj(t) = ¢i;y(t) = y(t), and
Eqs. (5) and (6) reduce to the same form as Egs. (1) and (2). Thus if ¢;; is unity, expressions for
calculating steady-state ith modal response and damper response in a MDOF structure-TMD system
will be exactly the same as those for main mass and damper mass responses respectively in a SDOF
structure-TMD system. In which case, design aids (e.g., Randall et al., 1981; Warburton and Ayorinde,
1980; Rana, 1995), developed for designing a TMD for a SDOF structure can be directly used to design
a TMD for a certain structural mode of a MDOF structure. Design procedure using this approach
is illustrated by designing a TMD to control the first mode of a flexible and lightly damped 3 DOF
structure with properties given in Table 1:

Table 1. Properties of the 3 DOF Structure Considered

10 0 0 [ 1000 —1000 0]
M(Kg)=| 0 10 0 K(N/m)= | —1000 2000 —1000
0 0 10 i 0 —1000 2000 |

1.519 0.272 0.097 [ 0.737 —0.591 —0.328 ]

C(N—s/m)=| 0272 1.343 0176 | &= 0591 0328 0.737
0.097 0.176 1.246 | 0.328  0.737 —0.591 |

Q, = 0.708306 Hz, Q, = 1.98463 Hz, Q3 = 2.86787 Hz

Observing the structural modal matrix ® in Table 1, it can be said that in the first mode, the top floor
will undergo largest steady-state deflection under a harmonic excitation. Therefore the TMD should be
placed at the top floor for best control of the first mode. Since the TMD will be placed at the top floor,
mode-shape vector ¢ should be normalized with respect to its first element to calculate the structure’s
first modal mass. Therefore, the normalized ¢, is given as:

6, =[1.000 0.802 0.445)7

The first-mode modal mass is given as: M; = ¢T Mg¢, = 18.41 Kg. If the damper mass is taken to
be 2% of the entire building mass, then m = 0. 6 Kg Thelef01e the damper mass to the structure’s
first-mode modal mass ratio is: y; = Tﬁ = 0.03259. The first-mode modal damping ratio is known to
be (; = 2%. Using these known values of x; and (;, the optimum damper parameters, fo,; and (4,
can be found from a numerical search. One obtains

fopt = 0.952, (4, = 0.11.
This completes the design of the TMD tuned to the first mode of a 3 DOF structure.
MULTI-TUNED MASS DAMPERS

A single TMD can only control the mode for which it is designed. For controiling an additional mode a
seperate TMD can be used. Therefore, the concept of multi-tuned mass dampers (MTMD), i.e., having
a seperate TMD for every structural mode appears to be worth investigating. Much of the research in
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the area of multi-tuned mass dampers (e.g., Xu and Igusa, 1992; Yamaguchi and Harnpornchai, 1993;
Kareem and Kline, 1995) has been done with the aim of controlling a single mode only. In this paper,
analyses are carried out with the purpose of controlling multiple modes. The design method illustrated
earlier is used to tune each damper.

Assuming that 2% of the building mass is the total available mass for all the dampers, an appropriate
mass distribution among the various TMDs must first be determined. A response analysis of the
structure with harmonic base excitation of frequencies varying over a range which covers all three
natural frequencies was done. Obtained peak response ratios are, in first mode - 50.0 (at the top floor),
in second mode - 7.5 (at the first floor) and in third mode - 2.5 (at the middle floor). These response
values indicate the relative importance of various modes in determining the overall structural response
and TMD masses are distributed in the ratio of 50.0 : 7.5 : 2.5 for first-, second- and third-mode TMD,
respectively.

Harmonic Analysis of Modal Interaction

When a TMD is installed in the structure to control a particular mode, properties of the finally obtained
system differ from those of the original structure. Now, if an additional TMD tuned to another mode
is also to be installed, it may not perform as expected because of this effective change in structural
parameters. Also, the addition of a TMD may affect the performance of TMD(s) already present. This
problem of modal interaction is discussed with the help of a harmonic base excitation analysis. The
parameters of the various TMDs used are given in Table 2. Top-floor responses of the structure are
shown in Fig. 2 and the following observations are taken:

e To effectively control any particular mode, a seperate TMD, specifically tuned to that mode, must
be provided.

e The structural response of the first controlled mode is marginally increased due to the presence of
TMDs tuned to other modes while the structural response of second and third controlled mode is
marginally reduced due to the presence of TMDs tuned to other modes.

Effect on first mode Effect on second mode Effect on third mode
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Fig. 2. Top Floor Response Showing Effect of TMD(s) on Various Modes

Time-History Analysis

It was observed in the harmonic analysis that, the presence of higher-mode TMDs causes some deteri-
oration in the first-mode response. At the same time, to control higher modes, a seperate TMD must
be provided. Therefore, a MTMD is designed and investigated with the help of time-history analyses
under El Centro and Mexico earthquakes using one, two and three TMDs, respectively. Results of these
analyses are summarized in Table 2.

It is clear that the designed MTMD does not result in appreciable response reduction in addition to
what is already possible by a first-mode TMD. Based on the above harmonic and time-history analyses,
it can be concluded that, effect of controlling the higher modes is getting nullified by a marginal increase
in the first mode response.



Table 2. 3 DOF Structure-MTMD System Time-History Analyses Results

TMD(s) description Floor El Centro Mexico

Tuned to (location) Parameters no. Peak(cm) RMS(cm) Peak(cm) RMS(cm)

3rd 13.29 4.58 -22.33 5.60

1st mode: m=0.5 Kg 2nd 9.87 3.61 -17.76 4.52

(3rd floor) k=9.11 N/m Ist 5.26 2.12 -10.20 2.59

c=0.43 N-s/m TMD-1 -43.00 16.06 75.51 19.02

1st mode: as above 3rd 13.62 4.57 -22.22 5.62

(3rd floor) 2nd 9.66 3.61 -17.89 4.53

2nd mode: m=0.075 Kg Ist 5.14 2.06 -10.20 2.59

(1st floor) k=11.53 N/m TMD-1  -43.08 16.09 75.70 19.06

¢=0.07 N-s/m TMD-2 18.24 6.45 -12.82 3.25

1st mode: as above 3rd 13.63 4.57 -22.26 5.63

(3rd floor) 2nd 9.69 3.61 -17.91 4.54

2nd mode: as above Ist 5.15 2.07 -10.21 2.60

(1st floor) TMD-1 -43.13 16.11 75.84 19.09

3rd mode: m=0.025 Kg = TMD-2 18.21 6.45 -12.84 3.25

(2nd floor) k=8.09 N/m  TMD-3 11.41 4.28 -19.23 4.83
¢=0.02 N-s/m

3rd 15.65 6.45 -23.47 5.66

w/o TMD 2nd 11.02 5.13 -19.07 4.61

1st 6.18 2.94 -10.92 2.64

ACTIVE TUNED MASS DAMPERS

The concept of active TMD or ATMD, has been an area of interest to researhers for some time (Morison
and Karnopp, 1973; Chang and Soong, 1980). An ATMD offers benefits over a TMD like controlling
multiple structural modes and reduced damper mass and stroke requirement. At present there exist
several examples of real-life implementations of active mass dampers (Soong et al., 1994). Considering
the difficulties involved in the accurate measurment of floor displacements due to the lack of abso-
lute reference during a seismic event, algorithms have recently been proposed (e.g., Dyke et al., 1993;
Nishimura. et al., 1992a, b) which require only acceleration or acceleration and velocity measurements
but not displacement measurements. The algorithm proposed by Nishimura et al. (1992a, b) essentially
utilizes the same methodology of optimization, as originally proposed by Den Hartog (1956). This
algorithm is further studied in this paper. The equations of motion of a SDOF structure-active mass
damper system can be written as follows:

mi+k(z —X)+c(z - X)=AuP(t) + u(t) (7)
MX + KX —k(z — X)+CX — c(& — X) = P(t) — u(t) (8)

where u(t) is the control force. Assuming an undamped SDOF structure, Nishimura et al. (1992a, b)
proposed the following expression for control force calculation:

u(t) = —MGoX — CopGy(d — X) (9)

Where G, and G, are acceleration- and velocity-feedback gains respectively. G, should always be less
than unity since a G, > 1.0 results in a complete annihilation of inertial resistance causing instability.
In the presence of inherent damping in the main structure, the optimum damper parameters can be
found by a numerical search. However for an undamped SDOF structure, closed-form expressions for
optimal parameters have been derived:

Harmonic main mass excitation Harmonic base excitation
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Following above discussion, one can obtain optimum damper parameters when the damper is activated
using acceleration- and velocity-feedback control force. However it is preferrable to activate the TMD
only selectively while using it in passive mode for most of the times. Therefore there is a need to study
the performance of an active damper whose parameters (frequency ratio f and damping ratio (4) are
maintained at their optimum values of the passive mode. In this practical situation, G, and G, are the
parameters which should be optimized.

Harmonic Analysis

Figure 3 is obtained by performing steady-state harmonic base excitation analyses on a SDOF structure-
active damper system. This figure shows the plots of the peak response ratio values for different G,-G,
combinations with changing structural parameters. It is seen that at higher x and/or ¢, the benefit of
activating the TMD becomes less significant. From this figure it is also clear that

e Increasing G, and accordingly adjusting G, results in significant reduction of peak response ratios.
For parameters u = 0.02 and ( = 0.02, for example, the peak response ratio reduces from 7.6
(passive TMD) to 2.4 (at G, = 0.8 and G, = 4.0). The effect of increasing G, diminishes at
higher G, values.

e For each G, value, there exists an optimum G,, denoted here as G.,,. G, increases with
increasing G,. Adjusting G, to its optimum value is important in response reduction.

Performing a similar harmonic analysis on the 3 DOF structure considered, Fig. 4 is obtained. This
figure indicates that a significant response reduction is possible in all three modes. Although the value
of G,,, is different for different modes, the reduction in the response of higher structural modes by
using a G, which is optimum for the first mode would still be significant.
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Fig. 3.Effect of Various Ga-Gv Combinations on Response: SDOF Structure
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Time-History Analysis

Figures 5 and 6 summarize the results of the time-history analyses performed on the 3 DOF structure
under El Centro and Mexico earthquakes respectively. Under El Centro earthquake, significant addi-
tional reduction is observed. Under Mexico earthquake, the structure derives a relatively smaller benefit



from active control. Regarding the selection of suitable values of G, and G,, it is noted from above
analyses that increasing G, in general results in a further response reduction. However, this effect is
smaller at higher G, values. For the structure analyzed here, a G, of 0.6 seems to be reasonably good.
Also, it is to be remembered that, a G, > 1.0 will result in an unstable system. The value of G,
depends on the value of G,. Although G,,,,, as observed in the time-history results, usually differs from
harmonic excitation analysis results; providing a G,,, as suggested by harmonic excitation analysis
usually proves to be a good, if not the best, choice.
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Fig. 5. Top Floor Response and Actuator Force for Various Ga-Gv Combinations: El Centro
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Fig. 6. Top Floor Response and Actuator Force for Various Ga-Gv Combinations: Mexico

‘Harmonic Detuning Analysis

To determine the additional benefit that can possibly be obtained by adjusting the damper parameters
to their optimum active mode values rather than keeping them fixed at their optimum passive mode
values, detuning analysis using steady-state harmonic base excitation analysis is done on a SDOF
structure-active damper system. The peak response ratio values so obtained are plotted in Fig. 7. In
this analysis, optimum G, which is obtained by harmonic analysis (Fig. 3) has been used. '

In addition to noting the significant additional response reduction offered by ATMD, it is observed that
the benefit of adjusting parameter f is not significant. Since damper parameter (; is already adjusted
to its active state optimum value by using the appropriate G,, a change in (4 causes performance dete-
rioration. From Fig. 7, it can be concluded that it is permissible to let the damper parameters remain
fixed at their optimum values of passive state even when the damper is switched to the active mode.

This is significant in simplifying the implementation of such a control system without compromising
control efliciency.
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Fig. 7. Detuning Analysis to Find Optimum Damper Parameters in ATMD

CONCLUSIONS

A study performed on TMD and their generalizations is presented. A simplified procedure for TMD
design is illustrated. Control of multiple structural modes using a MTMD is not found to be effective
due to modal contamination in the 3 DOF structure considered. A recently proposed active TMD
algorithm is simplified and it is shown to be effective in response control. Selection of appropriate
values of feedback gains is also explained.
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