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ABSTRACT

The objective of this study is to develop the method for identifying structural parameters
of the local part of a structure(substructure), which can consider the noises included in
the input motions at the boundaries of the substructure. The absolute velocities and dis-
placements at the boundaries, that are the input motions to the substructure, are incorpora-

ted into the system and measurement eguations of extended Kalman filter, in order to reduce

the influence of noises in the input motions. Numerical simulation is carried out for iden-

tifying structural parameters in the local part of a shear type MDOF structural model and
the effectiveness of the present method is investigated.
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INTRODUCTION

It is very important to estimate the structural parameters such as stiffness and damping co-
efficients of real structures by using earthquake observation records, for estimating the
existing condition and the damage degree of structures. For this purpose, the recursive
identification method for structural parameters in time domain has been developed in recent

years. Hoshiya et al. (1984, 1987) presented an algorithm to identify structural parameters
by extended Kalman Tilter and illustrated that their method was very useful for identifi-
cation of various types of vibrational systems subjected to earthquake motions. However,
when the structure has a large number of degrees of freedom(DOFs), it is not practical to
identify the complete structural parametes by the method at a time, because the accuracy and
convergency in identification are deteriorated and the computation time required for conver-
gence increases. From such a point of view, the substructure approach or the localized iden-
tification method has been developed (Koh et al.,1991, Oreta and Tanabe, 1993). These identi-
fication methods not only improved the accuracy and convergency of structural parameters to

be identified but also reduced computation time considerably.

In the localized identification, the observation records at the boundaries of a substructure
to be identified are generally treated as the input motions which are assumed to be noise
free. However, it is practical that the input motions to the substructure are considered to
be noise corrupted because those are obtained from observation and the noises included in
the observation records deteriorate the accuracy and convergency of identified parameters.



Recently, Koh and See (1994) have developed the method which can consider not only the noise
in input motion but also the modeling error by using the adaptive extended Kalman filter and
applied their method to identification of complete structural parameters. The method is use-
ful for identifying the uncertainties of parameters but is rather complicated in the process
of computing system noise covariance by adaptive filter.

The objective of this study is to present the method to reduce the influence of noises inc-
luded in the input motions in parameter identification of a substructure. The absolute velo-
cities and displacements at the boundaries of the substructure, which are the input motions
to the substructure and are calculated from numerical integrals of absolute acceleration
records, are incorporated into the system and measurement equations of extended Kalman fil-
ter. In numerical examples, the effectiveness of this procedure is investigated by using a
shear type 10-DOFs structural model.

LOCALIZED IDENTIFICATION OF STRUCTURAL PARAMETERS

A shear type MDOF structural model as shown in Fig.1 is considered as an example to illust-

rate the localized identification method. In this study, the responses of the structural

model are assumed to be given in the form of absolute acceleration, velocity and displace-

¥ent time histories since the observation records are actually obtained as absolute response
orms.
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Fig.1 MDOF Structural Model

Fquations of Motion of Substructure and Its Solution

The equations of motion for the substructure (local part of the structural model) in Fig.1
can be written as

Mi(t) + Cz(t) + Kz(t) = f(t) (1)

in which () denotes time derivative, M, , K are the mass, damping and stiffness matrices,
respectively, z(t) the absolute displacement vector and f{t) the excitation force vector
which includes the input motion to the substructure.
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where subscripts 'p-1' and 'r+1' denote the mass numbers at the boundaries of the substruc-
ture as shown in Fig.1l, and n=r-ptl is the number of masses included in the substructure.
Eq.1 can be solved in the discrete form by using Newmark's § methd as follows.

i(kt1) = A Y{ £(ktl) - C-a(k) - K-b(k) } (7)
{2(k+1} =a(k) + At-A"'{ f(k+t1) - C-a(k) - K-b(k) }/2 (8)
z(k+1) = b(k) + pAtZ-A"'{ f(k+t1) - C-alk) - K-b(k) } (9)
in which matrix A, Vector a(k), b(k) and f (k+1) are as follows.
A=M+At-C/2 + BALE-K (10)
{-a(k) = 1(k) + At-i(k)/2 (11)
b(k) = z(k) + At-2(k) + (0.5-p)AL?-% (k) (12)
Cp—lip—l (k+1) + kp—lZp—l (k+1)
f(k+1) = { 0 } (13)
Crlr+: (k+1) + krZr+a (k+l) nx1

where k denotes kAt and At is the time increment in response time history.

Consideration of Input Noise in Localized Identification

Now consider the excitation force vector f (k+1) in right hand side of Egs.7-9, which inclu-

des the input motions (ip_1,Zp-1,2r+1, Zr+1) at the boundaries and the parameters(cp-1,kp-1,

Cr,Kkr) in the substructure as shown in Eq.13. In previous studies (Koh et al.,1991,0reta and
Tanabe, 1993) , the identification has been carried out assuming that the input motions at the

boundaries of the substructure are to be known. However, it is practical that the input mo-

tions are regarded as being unknown since those are obtained from observation records and
generally include some noises which deteriorate the identification accuracy.

In this study, the input motions are incorporated into the system and measurement equations
by the following procedure. Assuming that the absolute acceleration responses at the bound-
ary masses of p-1 and r+l are observed, the velocities and displacements can be calculated
by using Newmark's f method as follows.

ip-1 (k1) = Zp-1 (k) + w1 (k) (14)
{Zp—l (kt1) = 2p-1 (k) + At-Zp-, (k) + At-w,(k)/2 (15)
Zp-1 (k"‘l) = Zp-1 (k) + At'ip-l (k) + Atz'Zp—l (k)/2 + ﬂAtz‘Wx (k) (16)



{irﬂ (k+1) = Zr+r (k) T w2 (k) (17)

ir+l (k+1) = irfl (k) + At'ir+l (k) + At‘Wz (k)/z (18)
Zr+1 (k+1) = Zr+1 (k) + At‘ir+1 (k) + At2'2r+l (k)/2 + BAtz‘Wz (k) (19)
where wi{k) is the difference of the acceleration time history as follows.
W) (k) = ip—l (k+1) - ip—l (k) (20)
Wz (k) = '7:r+l (k+1) - ir+1 (k) (21)
Representing Egs.14-19 in matrix form
d(k+1) = B-d(k) + D-w(k (22)
in which d, w, B and D are represented by
d = { ip-l, 2p—1, Zp-1, iri-l, 2r+1, Zr+1 }T (23)
W= { Wi, Wz }T (24)
1 0 0 0 0 0
o2 b 1 0 00
_ t t
B = 0o 0 0 1 o0 0 (25)
0 0 0 At 1 0
0 0 0 AM2/2 M 1 {exs
1 0
At/g 0
p= | B0 (26)
0 At/2
0 BA’LZ 6xX2
Substituting Fq.22 into Eq.13
f(kt1) = E-d(kt1) = E-B-d(k) + E-D-w(k) (27)
in which matrix E is given as
0 co-1 k-1 0 0 O
D 0 0 0 0 0
E = . . . . . . (28)
0 0 0 0 0 O
0 0 0 0 Cr kr nxs

Next, substituting Eq.27 into Egs.7-9, the following state equations for response of each
mass are obtained.

i(k+1) = A"'{ E-B-d(k)-C-a(k)-K-b(k) }+A 'E-D-w(k) (29)
1(k+1) = a(k)+At-A"*{ E-B-d(kK)-C-a(k)-K-b(k) }/2+At-A"'E-D-w(k)/2 (30)
z(kt1) = b(k)+pAt2-A"*{ E-B-d(k)-C-a(k)-K-b(k) }+pAt* A~'E-D-wi(k) (31)

The system equation of extended Kalman filter is then composed of Egs.22 and 29-31 together
with the next equations representing the transition of identified parameters.

{ k(k+1) = ki(k) (32)
¢ (k+1) = ¢(k) (33)

1

in which ¢ and k are as follows.



In the Egs.22 and 29-31, the vector w{k) is regarded as system noise with the 2x2 covariance
matrix Q(k) whose elements Q:; (k) are calculated by the next equation.

Qs = ) a (36

where Ta is the averaging time in calculation of Q(k). In this study, T. = 4sec is used in
numerical analysis.

Application of extended Kalman Filter

System Equation In order to apply extended Kalman filter to parameter identification, the
state variables and parameters are transformed as follows.

X = { F CPREREREREEER , Xn }T - { ip, _______ , ir }T =y (37)
Xz = { Xnag,=r--"re" C Xan }T = { gy e i T =i (38)
| %s = { Xansi1, "core" L  Xan YT = { Zp,ceeree Ze 1T = 2 (39)
X4 = { Xan+1, """ , X4n+1 }T = { Kp-1,°**"*" ke }’I‘ = k ( )
Xs = { Xan+z, """ , Xomez )T = { Cponyoroenn or }T = ¢ (41)
Xe = { Xsn+3, """ ; Xsn+s }T = { Zp-1, Zp-1. Zp-1, Zre1, Zre1, Zr”}T (42)

Then, the system equation of extended Kalman filter, which is constructed by Egs.29-33 and
22,are transformed as follows.

X, (kt1) = g.{x(k)} + A"'E-D-w(k) (43)
Xz (k+1) = g2{x(k}} + At-A"'E-D-w(k)/2 (44)
1 x3(k+1) = gs{x(k)} + BAt3-A"'E-D-w(k (45)
Xa (k+1) = x4(k) (46)
Xs (k+1) = xs (k) (47)
s (kt1) = B-xe (k) + D-w(k) (48)
in which w(k) is system noise and x, £, 82, £s, A, a and b are as follows.
X = { XlT, XzT, XaT, X4T, XsT, XGT }T (49)
gI{X(k)} = A_I{ EBXs(k)“Ca(k)_Kb(k) } (50)
{gz{x(k)} = a(k)+At-A""{ E-B-xe (k) -C-a (k) -K-b (k) }/2 (51)
gs{x(k)} = b{k)+pAt?-A""{ E-B-xe(k)-C-a(k)-K-b(k) } (52)
A =M+ At-C/2 + pALZ-K (53)
{ (k) = x2(k) + At-x, (k) /2 (54)
b{k) = xa(k) + At-x2(k) + (0.5-8)At?-x: (k) (55)
Consequently, Egs.43-48 are represented in the following.
x(k+1) = g{x(k)} + T(k) -w(k) (56)
in which vector g and matrix I' are given as follows.
g=1{2&" g7, g7, X4, X5, (B-xe) T }T (57)
AT'E-D
At-A"'E-D/2
Ik = Bt 2 £ (58)
0

D {5n+8) x2



Measurement Equation Measurement equation is generally represented as
vk = H-x(k) + vik (59)

where y = measurement vector, v = measurement noise vector and H = matrix which connects
measurement vector with state variable. If the acceleration records are obtained at all
masses and the boundaries of the substructure to be identified, the matrix H is ginen as
follows.

1
-0 0 0 0 0 0
H= 1 (60)
(] .......................... 0100000
0 .......................... 0 0 0 0 1 0 D (n+2) x (5n+8)

The state variables including the identified parameters can then be identified by the ordi-
nary extended Kalman filter (Jazwinski,1970) with the system equation in Eq.56 and measure-
ment equation in Eq.59, if the appropriate initial values are used for the time-dependent
state variables and the unknown parameters as well as their error covariance matrix. In the
localized identification, stiffness and damping coefficients in the substructure, k: and c;,
i=p-1,---,r, that are the elements of matrices K and (, are identified, while the masses m;,
i=p, ---,r, are assumed to be known.

NUMERICAL EXAMPLE

In the numerical example, a 10-story shear structural model as shown in Fig.2 and Table 1 is
used to illustrate the effectiveness of the localized identification method in this study.

Table 1 Properties of 10-DOFs Structural medel

® : Input mass mass, in stiffness,in | damping,in

O :Output | Mumber | tons(x10%) kN/m (x10%) | tons/sec (x10?)
1 3 0.4 8
" ° 2 4 0.6 12
ks, Co 3 5 0.8 16
_— ‘:’ 4 6 1.0 20
e 5 7 1.2 24
k1o, c10 6 8 14 28
o T 9 1.6 32
(a)Whole Structure (b)Substructure g i[l] ég ig
Fig.2 10-DOFs Structural Model 10 12 2.2 44

400 MAX=341.7 GAL

TIME(SEC)

Fig.3 Input Motion Record



The response of the complete structure is analyzed by using Newmark's f§ method, in which the
1940 E1 Centro acceleration record (Fig.3) with a time interval of 0.02 sec and duration of

20. 48 sec is used as input ground motion at the base. The observation records are then gene-
rated by adding band limited white noise with a frequency band width of 20 Hz to the accele-
ration responses of the masses 9 and 10 as well as the input ground motion, in which the
intensity of noise is set by the rate (per cent) to rms intensity of each response. The
identified substrucrure includes mass 10 as shown in Fig.2, while the identified parameters

consist of the stiffness and damping coefficients of masses 9 and 10, i.e., ke, Kkis. Cs, and
Cio. In the identification, time dependent state variables are initially set at 0. The ini-

tial values of the error covariance matrix are set at 1 for all state variables. The noise
variance for the observation response records is given as 107°. Assuming the initial values

of 2 times of true values for all unknown parameters, the localized identification is car-
ried out by the method in this study as well as in previous study (Koh et al.,1991).

Table 1 and 2 show the errors of the identified values of parameters in various noise level,
by previous study and this study. In these tables, errors e (%) are distinguished by the
following symbols.

: e = 5%, O: %=<e=10%, [J]: 10%=¢e=20%

A 20%= £ =5H0% X : h%=¢
It is found from the tables that the stiffness and damping parameters of the masses 9 and 10
in the substructure can be reasonably estimated by the method in this study (see Table 3),
while those parameters are not estimated accurately by previous study in the case of noise
level larger than 0.5% (see Table 2).

Table 2 Errors of Identified Parameters by Previous Study

Noise Level Stiffness Damping
(%)
0.1
0.2
0.3
0.4
0.5
0.6
0.8
1.0

Q: =5, O: B=e=10%,
A 20%<e=hl% x :5H%=¢c

Co

<]
<]
¢
—
]

%X X% |x|[>OC|0|=
X % %% [>|O0|0|F
x % |x%|x|[>|lOo|O

O
O
A
O
x
X
X
X
O

: 10%= e =20%

Table 3 Errors of Identified Parameters by This Study

Noise Level Stiffness Damping
(%) k9 kio Co Cio
1.0 O O O O
2.0 O O O O
3.0 (@) O @) O
4.0 O O O O
5.0 (@) O ®) O
6.0 O O O O
8.0 (@) O O (@)
10.0 @) O O O

O: =5, O: =e=10%, [ : 10%=e=20%

A 220%=e=50% x : Hl¥=¢



Fig. 4 shows the convergence process of the identified parameters ko, kio, co and c,o by
present method in the case of noise level of 5%. In the figure, horizontal axis is time in
sec and vertical one the estimated/true value ratio of parameters. It is found from the
figure that all parameters converge to true values about 4~5 sec (200~250 cycles),although
the accuracy of the damping coefficient is not so good (2~10%) .
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Fig. 4 Convergence Process of Stiffness and Damping Coefficients by Present Study
(Noise Level 5%)
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CONCLUSION

The localized identification method for structural parameters using extended Kalman filter
has been presented, in which the input motions at the boundaries of a substructure are
treated as being noise corrupted. In the present procedure, the input motions at the bound-
aries of the substructure are incorporated into system equation and measurement equation of
extented Kalman filter, in order to reduce the noise influence on identification of parame-
ters. It has been shown from numerical examples that the present method works well even if
the noise level of input motions is about 10%.
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