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Abstract

The numerical integration-control algorithm for substructure on-line computer testing was proposed in this
paper. The algorithm is able to handle three abilities which are to have weaker stability criteria, to apply the
load and / or displacement control and to dissipate spurious growth of higher mode response. The validity of
the algorithm was verified by means of numerical experiment of substructure on-line test on the frame

structure.
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1. Introduction

Recently, a new technique, which incorporated the concept of substructure analysis (Bathe, k, 1982) into the
on-line computer testing (Hakuno et. al., 1969, Takanashi et al., 1974), which is referred to as “OLT” , has
been developed to investigate inelastic dynamic behaviors of structures. This technique is able to simulate
inelastic dynamic behavior of structure by conducting quasi-static loading test on only a part of structure and is
referred to as "substructure on-line computer testing (SOT) (Mahin et al., 1985; Nakashima et al., 1991)”.
Since the SOT has a lot of advantages, it may become a major testing technique for investigating inelastic
dynamic behavior of structure. However, application of the SOT has been limited to a specific type of
structures so far. This may be due to the following issues to be solved (Nakashima et al., 1991; Shing and
Mahin, 1983);

I.  Stability of solution for multi-degrees of freedom system.
II. Applicability of the displacement control technique to degrees of freedom with high stiffness.
III. Spurious growth of higher mode responses due to experimentally generated errors.

To solve these problems and also to make the SOT practically feasible, it must be needed to develop a
numerical integration-control algorithm which satisfies the following conditions;



1. A numerical integration scheme should have weaker stability criteria and it is desirable that it is
unconditionally stable if possible.

2. It has capability for applying the load and/or displacement control.

3. It has ability for dissipating spurious growth of higher mode responses.

The objective of this paper is to develop a numerical integration-control algorithm which is applicable to the
SOT and has an ability satisfying in the conditions.

2. Numerical integration -control algorithm for SOT
2.1 Principle of SOT

In the SOT, total structure is separated into two subassemblages. One is an experimental subassemblage whose
restoring force shall be obtained by means of actual loading test. The other is an analytical subassemblage
whose restoring force shall be calculated by means of mathematical model. Then, the restoring forces of two
subassemblages are coupled based on the concept of substructure analysis. Generally, structural subassemblage,
which has complex restoring force characteristics or may govern overall behavior of structure, is modeled as
the experimental subassemblage. The remaining subassemblage of structure is modeled as the analytical
subssemblage. Fig. 1 shows an example of substructure modeling for 3-span and multi-story framed structure.
The outer columns in the first story were modeled as the experimental subassemblage and the remaining
members were modeled as the analytical subassemblage. The restoring force vector for overall structure can be
obtained by superimpose two restoring force vectors corresponding to both subassemblages. Consequently, the
equation of motion for the SOT can be expressed as follows;

MAX + CAX + AR = AF (1)
in which, AR = AR+ AR )]

where M and C indicate the mass and damping matrices, AF AX and AX indicate the external force,

acceleration and velocity increment vectors, and AR, AR and AR indicate the restoring force increment
vectors of total structure, experimental subassemblage and analytical subassemblage.
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Fig. 1 Concept of SOT
2.2 Conditions and limitations of numerical integration-control algorithm for SOT
As stated in chapter 1, a numerical integration-control algorithm to be proposed must have the abilities being

able to overcome the issues of I to II. Furthermore, since the SOT is different from the standard earthquake
response analysis with respect to several aspects, there exists several limitations encountered during the



numerical integration process in the SOT.

The SOT is an efficient approach which can investigate dynamic behavior of structure with complex hysteresis
properties. In fact, tangential stiffness of experimental subassemblage would vary in a complex manner. Also, it
is extremely difficult to evaluate tangential stiffness for multi-degrees of freedom system during loading to be
controlled according to calculated response values. Therefore, 1)it is required that an algorithm to be adopted
in the SOT can simulate complex inelastic behavior of experimental subassemblage without evaluating it's
tangential stiffness (Shing et al., 1991). There is an iterative incremental solution procedure which obtains
inelastic response of structure without evaluating it's tangential stiffness. However, it may happen that
controlled displacements overshoot target displacements and then they turn over their directions and approach
target displacements, if the On-line computer testing incorporating an iterative solution procedure is applied to
multi-degrees of freedom system. Since behavior of structure depends on experienced hysteresis path, it is not
desirable that loading direction of displacements changes within a single time step. Therefore, 2)it is required
that an algorithm would provide such incremental displacements that would not turn over their directions
within a single time step (Shing et al., 1991; Mahin et al., 1987; Nakashima et al., 1991). In the standard
earthquake response analysis, a size of integration time steps is taken to be sufficiently small to guarantee
stability and accuracy of solution. In the SOT, On the other hand, displacement increment to be controlled has
to be kept such a magnitude that it can be controlled accurately. It may happen that a magnitude of
displacement increment becomes smaller than a controllable limit value, if a smaller size of integration time
steps, A7, is used. Therefore, 3)it is required that one should not make a size of time steps smaller boundlessly.
An algorithm must possess the abilities of 1, I and I although it is subject to the limitations of 1), 2) and
3). For example, Mahin et al. (Shing et al., 1991; Mahin et al., 1987) proposed an algorithm that the control
would be executed while correcting target displacements based on the dynamic equilibrium equation within a
single time step. This algorithm satisfies the condition stated in the above. When the algorithm is applied to the
structure with multi-degrees of freedom as shown in Fig. 1, it may happen that the calculation speed can not
follow the loading speed of actuator since the computational time increases greatly to obtain target
displacements to be corrected. Finally, 4) it is recommended that an algorithm is not required to correct target
displacements consecutively and a control technique similar to that of explicit integration scheme can be
applicable if possible (Nakashima et al., 1991).

2.3 Formulation of numerical integration - control algorithm

An algorithm to be proposed is based on the implicit Newmark 3 -method which incorporated the initial stress
method (Zienkiewicz, 1984) to obtain converged solution iteratively with fictitious stiffness and unbalanced

forces. Therefore, the increment of restoring force vector AR can be expressed as AR = K, X - AR". Where
AR" indicates the increment of unbalanced force vector, K, the assumed stiffness matrix and AX the

increment of displacement vector. To cope with the issue of I, the @-method shall be introduced into the
said numerical integration algorithm. The - method is an implicit integration algorithm which guarantees
unconditional stability. It can suppress spurious growth of specified higher mode responses by means of an
artificially introduced damping parameter. Consequently, the equation of motion can be expressed as follow;

MAX}HI + (l + a)(jAXnH _(,'AXIHI + (1 + a)KI AXI7+1

—aK, AX, ~{(1+a)AR!,, ~aAR; }

=(1+a)AF,, —0AF,

7+1

(3)

where, @ is the auxiliary parameter, and the subscripts 7 and #+1 indicate the step number of discretized

times. Solving the equation based on the @ -method and applying an iterative procedure based on the initial
stress method, the solution can be formulated in the form of recurrence equation as follows;

*-1

AX (< - K {AF*

n+l n+l

AX,, =1/(BAt?)AX!") —1/(BA) AX, -1/(2B) AX, (5)

n+l

n+l

+(1+a)AR"(“} 4)



AX,, =(v/BAAXE —(v/B)X, -{(v/2B) -1} ALK, (6)
AR(k+l) + ARu(k+l) =K1AX(k+1) (7)

n+l n+l n+l

AF., =(1+a)AF,,, ~obF, + M{(1/BA)X, 28X, e (tea) oy /B)X, +{v 2B)-1}Ai, ]

n+l . (8)
+aCAX, +oK,;AX, —aAR,

K =(1/BA* )M +(1+ o )(y [BA)C + (1 + @)K, (9)

in which, B =(1-a)*/4, vy =(1/2)-a (10)

k=0123L-1, AR =0, AX,  =AX!Y (11

where, B and y are the auxiliary parameters of o -method, the superscripts & and & +1 are the number of
iterations, and I indicates the final number of iterations in a certain step. There are cases that the limitations of
2) and 3) stated in section 2.2 may not be satisfied when an iterative calculation is executed several times.
However, convergence of the proposed iteration procedure is satisfactory (Kanda and Shirai et al., 1995) and
accurate solution can be obtained even if a number of iteration is only one. To cope with the limitations of 2)
and 3), a number of iteration shall be only one and thus a number of corresponding control to gain a target
value shall be only one. Fig. 2 shows the flowchart of proposed numerical integration algorithm.
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Fig. 2 Proposed Numerical Integration Algorithm

Furthermore, a control algorithm shall be constructed based on the numerical integration algorithm to solve the
issue of II. In the SOT or OLT that the explicit numerical integration algorithm is utilized, it is common that
response values are estimated using feedback values of experimentally measured restoring forces. The
proposed algorithm is similar to the explicit algorithm in a sense that response values are estimated using
unbalanced forces evaluated on the basis of experimentally measured feedback values. It is a common practice
to utilize the displacement control technique in the SOT or OLT because it is easy to combine such control
technique with the numerical integration algorithm. However, it is also possible to utilize the load control
technique if an algorithm can be formulated so as to be compatible with such load control technique. Taking
advantage of capability that the proposed algorithm can estimate response values if unbalanced forces can be
evaluated using feedback values of experimentally measured restoring forces, the load control technique shall
be combined with the proposed integration algorithm. Fig .3 shows the proposed control algorithm during the
process from first obtaining response displacements AX ¥ until obtaining unbalanced forces R)({*". In this

n+1 n+l

algorithm, at first it is required to obtain the target restoring force of experimental subassemblage R!., based
on the following equation.



E;+l = 121 Xr:+1 - R’:H (12)
in which, X' =X+ (13)

n+t n+l

where, K, indicates the assumed stiffness matrix of experimental subassemblage and R" indicates the
unbalanced force vector of experimental subassemblage. The unbalanced force vectors for the experimental and
analytical subassemblages are evaluated independently. Then, the unbalanced force vector of total structure is

calculated by superimposing those unbalanced force vectors.
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Fig. 3 Proposed Control Algorithm

The matrices of /,, I,, J* and J* shall be introduced to evaluate target values to be controlled and
unbalanced forces for both subassemblages systematically. Where /,, and /, indicate the matrices for selecting
either the load control or the displacement control, ./ and J* indicate the matrices that transform the target

vector of total system to the decomposed target vectors of each subassemblage. The target vectors for both
subassemblages, / and .J, can be obtained in terms of 7}’ and 7;; as follows;

];eE = ILJEE,:H +]D']EX:1+] (14)
‘T‘;?A =J-4Xlt1+1 (15)
inwhich, 7=1, +7, (16)

As is seen from Eq. (14), each element in 7% becomes the target value of load when the corresponding degree

of freedom is controlled by the loading. Also each element in 7, becomes the target value of displacement
when the corresponding degree of freedom is controlled by the displacement. Similarly, each element in the
feedback vector 7 becomes the measured value of displacement when the corresponding degree of freedom
is controlled by the loading. On the other hand, each element in 7 ¥ becomes the measured value of load when

the corresponding degree of freedom is controlled by the displacement. Note that / indicates the unit matrix.
Consequently, the unbalanced force vectors for both subassemblages can be obtained in terms of the feedback

vectors, 7 and 7, , as follows;

R‘ R JE (L TE + 1,17 )-J% (1, T +1,T;) (a7

n+l



I’éu(k+l) =]2]J.4’TRA _l]A'TB.;i (18)

n+l

where, R"**V indicates the unbalanced force vector for the analytical subassemblage, and J 4 and J¥ indicate

n+l

the transpose matrices of J* and J*, respectively. Finally, the unbalanced force vector for total system can be
obtained by the following equation;

Ru(k+1) =’R'u(k+1) +]’éu(k+1) (19)

1+l n+l n+l

In the next place, the matrices of J®, J*, I, and I, shall be described in detail. Fig. 4 shows the shear

spring-mass model with four degrees of freedom. A number of row in J ¥ and J* is equal to that of degrees of
freedom for each subassemblage and a number of column in J* or J* is equal to that of degrees of freedom for
total system. If the structural part including the masses of 1 and 2 is modeled as the experimental
subassemblage and the other part including the masses of 2, 3 and 4 is modeled as the analytical subassemblage,
the mass of 2 will be shared by both subassemblages. In this case, ./ ¥ and .J7 can be expressed as indicated in
Fig. 4 Note that J® and J* are the square matrices and a number of row and column composing those
matrices is equal to the degree of freedom for the experimental subassemblage. In case that the mass of 11s
controlled by the load and on the other hand the mass of 2 is controlled by the displacement, /, and 7, canbe
expressed as indicated in Fig. 4 Furthermore, it is possible to switch from the load control to the displacement
control or vice versa only by exchanging the corresponding elementsin /, and /.
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Fig. 4 Example of 7 and .J for Shear Spring-Mass Model with Four Degrees of Freedom System
3. Verification of numerical integration-control algorithm by means of numeral experiment

In this chapter, validity of the proposed algorithm is verified by conducting the numerical SOT on the framed
model as sown in Fig. 5 The parameters to be used are listed in Table. 1. The analysis model is a single-span 3-
story framed structure with braces at second and third stories. The columns at first story, which are reinforced
concrete members, were selected as the experimental subassemblage. Thus, the horizontal, rotational and axial
degrees of freedom in those columns have to be controlled. Note that these columns have extremely high axial
stiffnesses. The input excitation used is the N-S component of EL-CENTRO earthquake accelerations. The
restoring force of reinforced concrete columns; that is, the experimental subassemblage, shall be evaluated by
applying the fiber method (Kanda, Shirai et al., 1989) instead of actual loading test. On the other hand, the
remaining part of structure was modeled as the analytical subassemblage and was assumed to behave within an
elastic range. Furthermore, for comparison, it is assumed that the response to be evaluated by the explicit
Newmark- 8 method with @ ,Af = 1.5, can be regarded as the exact solution. Thus, the exact solution is
compared with the response obtained by the proposed algorithm with @ , A7 = 3.0. In case 1, it will be studied

whether the proposed algorithm can suppress propagation of experimental errors and can provide stable and



accurate solution even with relatively large Af. The input error introduced is the undershoot displacement of
20wn which corresponds to the amount measured by the actual loading test. In case 2, it will be studied

whether the proposed algorithm makes feasible to conduct the numerical experiment while selecting the

advantageous control technique either the displacement control or the load control.

Table .1 Experimental Parameters
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Fig. 5 Analytical Model

Fig. 6 shows the time history of responses for A in the experimental subassemblage (case 1). When o =0,
spurious higher mode responses due to the undershoot error were observed. On the other hand, when
a = - 1/3, the stable and accurate solution was obtained although the experimental error was introduced. This

may be due to the reason that the numerical damping parameter suppressed superiors higher mode responses.
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Fig. 7 shows the time histories of responses for A in the experimental subassemblage(case 2). Fig. 7(a) shows
the result obtained by applying the displacement control to the axial direction and Fig. 7(b) shows the result
obtained by applying the load control to the axial direction. As stated in the above, the load control is desirable



when controlling degree of freedom associated with such high axial stiffness as column because incremental
displacement to be controlled may becomes smaller than the allowable limit value which can be controlled by
the actuator accurately. The response result obtained by the load control agrees well with the exact solution.
Therefore, it was confirmed that reliable SOT could be done by the loading and/or displacement controls if the
proposed algorithm would be applied.
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Fig. 7 Time Histories of Horizontal Displacement and Axial Force

4. Conclusion

The numerical integration-control algorithm, which can be applicable to the SOT, was proposed and the
numerical experiment was conducted by applying the proposed algorithm. The following conclusions were
obtained;

1) The proposed algorithm can provide stable and accurate solution even for high frequency modes as well as
low frequency modes.

2) The proposed algorithm can suppress the growth of spurious higher mode responses generated by
experimental errors without distorting lower mode responses.

3) The proposed algorithm can apply the load and/or displacement controls.
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