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ABSTRACT

This paper presents the experimental and analytical researches on the elasto-plastic deformation behaviors of
steel panel shear walls with and without concrete covering under monotonous as well as repeated cyclic
loadings. Tests are carried out on the specimens with various shear span ratios of surrounding frames and
with various thicknesses of steel panel and concrete covering, and the test results show, for the specimens
without concrete covering, that the initial stiffness is not so high but the ductility is very large by a formation
of the diagonal tension field of steel panel. For the specimens with concrete covering, the test results show
very high initial stiffness and very high maximum resistance by a diagonal compression field of concrete .
And under the assumption of a simple diagonal steel tension field and concrete compression field with a
certain equivalent effective width Be, the deformation processes from the initial loading to the ultimate state
are computed. The computed results coincide fairly well with the test results under monotonous and cyclic
loadings.
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INTRODUCTION

As aseismic panel element there are two kind of panel, reinforced concrete shear wall and steel shear panel.
Reinforced concrete shear wall is one of the best aseismic element for reinforced concrete and composite
structures. It shows after the formation of initial shear crack of concrete wall at a story sway angle of 0.001-
0.002, the stiffness gradually decrease and many cracks spread out and the maximum resistance is achieved
by a diagonal compression resistance of concrete at a very small story sway angle R of 0.005-0.006. After
that, very brittle compressive fracture of concrete occurs, and the resistance is falling down. On the contrary,
steel panel shear wall buckles by a diagonal compressive force at a lower loading stage and shows very large
plastic deformation by a diagonal tension field of steel panel formed along the buckled waves. Tests are
carried out on the steel panel shear walls with and without concrete covering, with various shear span ratios
of surrounding frame, various steel panel thicknesses and various concrete wall thicknesses under monotonous
and cyclic shear loadings. The combination of both aseismic panel elements may have more effective
characteristics of aseismic resistance.



TEST
Testing Method and Test Specimens

Loading method, measuring method and test specimen are illustrated in Fig.1, and the series of shear span
ratio is illustrated in Fig.2, and the test specimens are classified into five test series such as shown in Table 1.
Tests are carried out on 1/10 scale models of composite frames with various spans and a height of 30cm
infilled with various shear walls under monotonous and cyclic loadings. Surrounding composite frames are
composed of a cross section of 40 X 40 X 2.1mm encased in a reinforced concrete cross section of 60 ¥
60mm with longitudinal reinforcements of 2- ¢ 3mm X 2 and ¢ 2mm hoops and stirrups with 20mm pitches
such as shown in Fig.1. Story sway displacements 0 of both sides of the panel are measured by dial gauges
of 1/100mm. The mechanical properties of materials are shown in Tables 2, 3.
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Table 1 TEST Series
Shear Span Ratio ~ Wall Thickness

Test Series Specimens H:L ts(mm) to(mm)  Loading Covering
SWRI10 1:1.0 0.6 -
SWR SWRI15 1:1.5 0.6 -
SWRI18 1:1.8 0.6 -
SWR20 1:2.0 0.6 - Monotonous
SWT04 1:1.8 0.4 - Loading
SWTO06 1:1.8 0.6 - without
SWT SWTO8 1:1.8 0.8 - Concrete
SWT10 1:1.8 1.0 - Covering
SWTI12 1:1.8 1.2 -
SWT04CYC 1:1.8 04 -
SWT06CYC 1:1.8 0.6 - Cyclic
SWTCYC SWTO08CYC 1:1.8 0.8 - Loading
SWTI10CYC 1:1.8 1.0 -
SWTI12CYC 1:1.8 1.2 -
SCWR10 1:1.0 0.6 20
SCWRI1S 1:1.5 0.6 20
SWRCW2 SCWRI18 1:1.8 0.6 20
SCWR20 1:2.0 0.6 20 with
SCWR30 1:3.0 0.6 20 Monotonous  Concrete
SWCW2 SW04CW2 1:1.8 04 20 Loading Covering
SWO06CW2 1:1.8 0.6 20
SWCwW4 SW04CW4 1:1.8 04 40

SW06CW4 1:1.8 0.6 40
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Fig.2 Shear Span Ratio Series (SWR, SWRCW2)

Table 2 Mechanical Properties of Concrete

Test Series  Fe(MPa) Ft(MPa)
SWR 16.2 1.9
SWT 25.9 25

SWRCW2 34.0 3.1

SW04CW2 .4 41.1 1.6
SWO06CW2 4 42.0 1.1
SWT04CYC 40.5 24
SWT06CYC 42.0 2.7
SWTO08CYC 36.0 2.5
SWT10CYC 383 34
SWTI12CYC 343 2.2
Test Results

Table 3 Mechanical Properties of Steel

Plate (mm) ¢ y(MPa) o max(MPa) & max(%)
04 238 335 42
0.6 218 340 33
0.8 229 343 40
1.0 230 344 46
1.2 234 354 37
2.1 381 430 30
23 293 381 24
$3 231 346 -

Relationships between shear force (Q) and story sway angle (R) are shown in Fig.3-(a) for SWT series, in
Fig.4-(a) for SWR series (Yamada, 1993a, 1993b), in Figs.5-(a), 6-(a) for SWTCYC series (Yamada and
Sugii, 1995a), in Figs.7-(a), (a') for SWRCW?2 series (Yamada and Sugii et al, 1994a, 1994b), in Figs.8-(a), 9-
(a) for SWCW series (Yamada and Sugii, 1995b). The characteristic values of test results of the specimens
with concrete covering are indicated in Table 4, where SC indicates the first diagonal shear crack, CC the
formation of compressive crack of concrete, MAX the maximum resistance of the shear wall.
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Table 4 Test Results

SC CC MAX
Specimens Q(kN) R(rad) Q(kN) R(rad) Q(kN) R(rad)
SWRI0CW2 31.0 0.0015 82.0 0.0058 85.0 0.0066
SWRI15CW2 36.0 0.0012 72.0 0.0031 89.3 0.0048
SWRI18CW2 40.0 0.0019 101.0 0.0047 103.0 0.0059
SWR20CW2  47.5 0.0018 107.0 0.0044 116.3 0.0051
SWR30CW2 435 0.0010 120.0 0.0026 168.0 0.0045
SW04CW2 72.0 0.0021 120.0 0.0063 130.0 0.0057

SWO06CW2 29.0 0.0010 102.5 0.0041 117.0 0.0204

SW04CW4 66.0 0.0015 159.0 0.0066 160.0 0.0072

SW06CW4 87.5 0.0021 172.5 0.0054 210.5 0.0092
ANALYSIS

In this paper, the resisting mechanisms of a shear walls are replaced with two resisting elements, i.e. the
compression brace of concrete covering and the tension brace of thin steel panel. Stress-strain relationships of
the concrete and steel are assumed such as shown in Figs. 10, 11-(a), (b) and the moment-curvature relationship
of surrounding frame is assumed in Figl12, Q-R relationship of steel panel under cyclic loading is assumed in
Fig.13. The computed results are shown in Figs.3-(b), 4-(b), 5-(b), 6-(b), 7-(b"), 8-(b), (c), 9-(b), ().
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Assumption of Shear Walls

The resistance of steel panel is assumed to be a diagonal tension brace with a certain equivalent effective
width Be (=2/3L sin @) such as shown in Fig.14 (Yamada, 1992) :

sz=soy-Be-t-cos9=%so,-L-t-sinecos(-) (N
SE

Ry= ¥

S T Sin 6 cos @ @)

where s oy, s €y is a yield stress and yield strain of a steel panel. For the range of R 2 0.01, the value of
Be=L sin 8 is assumed.

The resistance of concrete wall is assumed to be a diagonal compression brace with a certain equivalent
effective width Be such as shown in Fig.15 (Yamada, 1992). The concrete walls are assumed to resist by pure

shear of panel until initial crack occurs :

Qu=1Ta"L- t—fg Lt 3)
= . 1L _Fc. 1
Ra=7a" 5570 Ga “)

where Gc=Ec/2(1+ v ). And it is assumed that the maximum resistance is achieved when the compressive
stress of the equivalent concrete brace reach the compressive strength of concrete:

Qu=Fc-Be-t-cosB=-§-Fc-L't-sinBcosﬂ (5)
= __CEnax
sinBcos0 ©)

where cen is the strain of concrete at the maximum resistance Fc (see Fig.11-(b)).
DISCUSSION

The maximum resistance of steel panel shear wall without concrete covering i.e. SWR, SWT series, is
achieved at a story sway angle R of 0.02-0.03 ,and only a slight reduction in resistance after the maximum
resistance is observed such as shown in Figs.3-(a), 4-(a). The steel panel shear wall with concrete covering
,i.e. SWRCW2, SWCW2, SWCW4 series, show at first very high initial stiffness and very high maximum



resistance at a very small story sway angle R of only 0.005-0.006 by the diagonal compression field of
concrete. Under cyclic loading, the specimen of SWTCYC series with the thinner panel shows the hysteresis
loop with slipping. The primary difference in hysteresis behavior is attributed to the thickness of the steel
panel. The maximum resistance is achieved at a story sway angle R of nearly * 0.03 for all thickness of steel
panel. For the specimen with the steel panel thickness of 0.4mm, the steel panel fracture occurred at a story
sway angle R of 0.07 near the bottom of column. The computed results coincide fairly well with the test
results quantitatively.

CONCLUDING REMARKS

Experimental and analytical researches on the steel panel shear walls with and without concrete covering
under monotonous and cyclic shear loadings are conducted. As the results, a diagonal tension field of steel
panel is formed along the buckling wave after the first buckling, and the steel panel show very high stable
ductility with no reduction of resistance (see Figs. 3-(a), 4-(a)). The specimens with concrete covering show
very high initial stiffness and very high resistance by a diagonal compression field of concrete which is
formed in the opposite direction to the tension field of steel panel (see Figs.7-(a), (a'), 8-(a), 9-(a)). Under
cyclic loading, steel panel shear walls with the thinner panel show hysteresis loops with the more slipping,
and the effect of the strain hardening of steel panel is very large. Under the assumptions of a simple diagonal
tension field of steel panel and compression field of concrete with a certain equivalent effective width Be, the
computed results coincide fairy well with the test results under monotonous and cyclic loadings (see Figs.3-
(b), 4-(b), 5-(b), 6-(b), 7-(b"), 8-(b), (c), 9-(b), (c)). The optimum selection of the thicknesses of steel panel
and concrete covering may be able to control the resisting behaviors of structures.
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