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ABSTRACT

This paper presents an overall probabilistic approach to evaluate seismic liquefaction
potential for saturated sandy deposits during earthquakes. The approach is derived
based on the elementary notion of sets. As input parameters, SPT values and expective
maximum accelerations of ground are used. The approach can give a liquefaction proba-
bility both at any depth and a given layer in ground. The data base of 39 historical
earthquakes was employed for formulating the model proposed in this study. Comparation
of the approach with Seed simplified procedure is performed to check the validity of
the approach by case studies.
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INTRODUCTION

Various procedures for estimating liquefaction probability for saturated sandy soils
have been developed in the past twenty years. Most of them are to base it either on
Seed's simplified procedure (Atkinson and Finn, 1983, 1985, 1987), combined with
Cornell's seismic assessment model, or on the laboratory cyclic stress test (Fardis
and Veneziano, 1981). These procedures are all based on the concept of the stress
ratio proposed by Seed firstly. Some empirical methods have been extended to estimate
the probability of liquefaction from SPT value, N, and maximum acceleration of ground
surface (Christian and Swiger, 1975),

Probabilistic versions of more sophisticated approaches have also been developed
(Donovan, 1971; Faccioli, 1973; Haldar and Tang, 1979, 1981; Chou, 1983).

The cornerstone of an overall probabilistic approach is a rational stochastic model in
which the relation between seismic stress caused soil liquefaction and resistance
against liquefaction can be well described in concept of statistics consistently. It
is the purpose in this study to attempt to establish such a model based on the elemen-
tary notion of sets. The word "overall" means that the major emphasis will be on the
consistency of the used concepts in probability theory and that to except some empiri-
cal factors in the new probabilistic model as much as possible, because the empirical
relations can be considered to be deterministic in fact.



BASIC CONSIDERATIONS

The evolution of the simplified procedure for evaluating liquefaction potential of
level deposits saturated using field data obtained from SPT was reviewed by Seed and
his coworkers (Seed and Idriss et al., 1971, 1981, 1983). They presented the fField
data for sites which are known to have liquefied or not liquefied during earthquakes
in the United States, Guatemala, Argentina, Japan, China and other parts of the world
to establish a criterion for evaluating liquefaction potential in earthquakes of mag-
nitude 7.5. This empirical procedure is believed to provide the most useful and deter-
ministic method avallable at the present time. It is difficult, however, to handle
some uncertainties associated in the famous expression of the stress ratio:

t /o =0.650 /o'a T (1)
av v v v max d

where T = seismic stress: o and o' = total and effective overburden pressure respect-
ively; a = horizontal acceleration of ground surface; and r = depth reduction coeffi-
cient. The numeric factor of 0.65, for example, assumes empirically that the equival-
ent uniform shear stress is equal to 65 percent of the absolute maximum shear stress.
In fact, the actual time history of ground motion will have an irregular and random
form. The acceleration correction factor is used to reduce the surface acceleration
for depth since the scil is a deformable body rather than a rigid one assumed. But it
is well-known that there is a significant scatter of the values for this factor and
increases with depth. The analysis of such uncertainties in this approach reveales
that the uncertainties associated with the load parameters exceed those of in the re-
sistance parameters (Haldar and Tang, 1979).

Obviously, these uncertainties associated with some secondary and unperfect, or unkown,
factors in such an empirical definition are not expected to negligible and further re-
search is needed.

Christian and Swiger (1975) utilized discriminant techniques to analyze directly the
data base from 39 earthquakes and have defined a parameter, A, as following:

A=a (o /o") (2)
max v Vv

The factor, A, can be regarded as an alternative earthquake-induced action considered
the depth effects. Relative density, Dr, determined from SPT values by Gibbs & Holtz
relation was used as resistance parameter against liquefaction. This statistical pro-
cedure has given the statistics of the data set of 39 earthquakes and can give the cor-
responding confidence level lines. These lines separate liquefiable from nonliquefi-
able cases but can not give the probability that liquefaction will occur. Nevertheless,
the parameters, Dr and A, are two convenient and practical variables in probabilistic
model. Statistics of the data set are also used in this paper.

QVERALL PROBABILISTIC MODEL

Many of the characteristics of probabilistic problems in engineering can be defined
formally and modeled succinctly using the elementary notion of sets (Ang and tang,
1975). This study is an attempt to apply this philosophy to the evaluation of lique-
faction potential.

Let R and S denote statistically independent random variables representing the natural
logarithms of Dr and A, with mean values of u(R) and u(S) and standard deviations of
o{(R) and o(S), respectively. A sample space of Z, then, can be defined:

Zz = {R,S}. (3)



Step-1 of the Approach

First assumption is that there exist two prospective limit values, o and B, in the
sample space consisting of all cases in which liquefaction have been certified and
that liquefaction is expected to occur whenever both R is smaller than or equal to «
at given S=B and S is greater than or equal to B at given R=a at a point of depth in
soil layer. There are two mutually exclusive and collectively exhaustive events, El
and E2, in the sample space:

El
E2

{R=a}S=8} and
{S=B|R=a}. (4)

As events can be combined to obtain other new events via the operational rules of sets
and subsets, the liquefaction potential denoted by a new event of E[L] will be the
union of the events E1 and E2:

E[L] = {E1 U E2}. (5)

This means that the given point in deposits will be liquefied by the occurrence of
either or both of the events E1 and E2. Since

p{E[L]} = 1, (6)
the liquefaction condition can be expressed by
pP{R=a|S=P} - p{S=P|R=a} = O. (7)
Second assumption is that there exist other two prospective limit values, 0 and &, and
that liquefaction is not expective to occur whenever both R is greater than or equal
to ©® at given S=6 and S is smaller than or equal to & at given R=6 at the same point

in deposits. Then, there are other two mutually exclusive and collectively exhaustive
events, E3 and E4, in the sample space:

E3
E4

{R=2¢|S=f} and
{S=<B|R=c}. (8)

Similarly, the condition for nonliquefiable cases can be expressed by

p{Ss6|R=6} - p{R=O|S=6} = O. (9)
Considering that (7) and (9) can be written into the forms of the conditional density
functions and that they are also normal distributions with the same expected values

and variances as those of R and S, an overall probabilistic model for liquefaction
potential limits can be develped:

B = u(8)+{c(S)/c(R)}{a-u(R)} (10)
6§ = p(8)'+{c(8)'/o(R) '} [6-p(R) "} (11)

in which the note of apostrophe represents the cases of R and S where liquefaction did
not occur in fact.

Employing the statistical properties of the data set, as shown in Tab.l, into (10) and
{(11), the model can be formulated as

B8 1.8948a - 8.6467 (12)

) 1.84120 - 9.1409 {(13)

These lines are shown in Fig.l and Fig.2. Figures show that liquefaction will definite-
ly occur for a given point falling to the left of the a-B line (p=1) and will definite-
ly not occur for a point falling to the right of the §-0 line (p=0). Obviously, the
area enclosed by the two lines hints that liquefaction will be possible with a proba-
bility. This is the important feature of the model which is different from the other
statistical expressions essentially. From the formulation above, the other form of the



model, by use of Gibbs and Holtz's relation, can be derived:

N(L) < 0.21(c'+70)exp[1.061ln(a o /o')] (14)
v max v v
and
N(N) = 0.46(c'+70)exp[1.081n(a o /o')] (15)
v max v v

in which N(L) and N(N) = the critical number of blowcounts from SPT for liquefiable
and nonliquefiable cases respectively; a max = peak horizontal acceleration (g); o© and
o'= total and effective overburden pressures in kN/m? respectively.

Table 1. Statistics of data set (Christian and Swiger, 1975)

Description All data Nonliquefied Liquefied
¢ of 1nDr 4.07164 4.27580 3.94404
c of 1nDr 0.28567 0.23367 0.23962
p of 1nA -1.20982 -1.26815 -1.17336
c of 1lnA 0.44178 0.43024 0.45406
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Step-2 of the Approach

Thus far, we have found the critical line between possible liquefaction and certain
liquefaction and the other critical line between possible liquefaction and nonliquef-
action. It is also of interest to evaluate the probability that liquefaction will occur
likely for those points located in the area enclosed by the two critical lines.

Consider here that another sample space consists of all possible liquefaction cases and
that a given point, (R=r,S=s), is located this space:

a{s) = r < 0(s) and 6&(r) = s = B(r) (16)

in which a(s) and 8(s) are the variation limits of r; B(r) and 6(r) are those of s.
Then, there are two statistical independent events of E5 and E6:

E5 = {S=s}R=r} and E6 = {R=r|S=s}. (17)

The event defined by actual liquefaction potential, E[P], can be derived from the
intersection of E5 and E6:

E[P] = {E5 n E6}. (18)

Third assumption is that p[E5] and p[E6] can be indicated by the ratios between partial
and entire domains of the integrals of the conditional density functions. The integrat-
jon limits, a(s) and B(r), is obtained by using of eq.(12) , letting B=s and a=r,
respectively. By the same way, 6(s) and &(r) can be calculated from eq.(13). Thus,

the liquefaction probability for the given point of [r=1nDr;s=1nA} will be:

[2(a)-2(b)]1[2(c)-2(d)]
p{E[P]} = (19)
[8(a)-2(c)]1[®(b)-2(d)]

in which ® = distribution function of standard normal variates; and

4.25 + 2.26 1lnA
4.17 1lnDr - 16.64
2.58 + 2.20 1nA
4.06 1nDr - 17.55

0N oo
n

This expression has been programed for practical use, as shown in Fig.3 for example.

Step-3 of the Approach

According to de Morgan rule, calculation for several points in different depths of a
given site can give the liquefaction probability for the whole layer under study, P(L),
as follows:

m
P(L) = 1 - ¢ (1 - p{E[P]} ) (20)
i=1 i

where m = the total number of calculated points in the whole layer of soil.
Of cause, a three dimensional calculation for liquefaction potential of site can be
performed more easily by use of eq.(20).

CASE STUDIES
To investigate the validity of the approach proposed, the equations mentioned above
were tested on data of past earthquakes from 1975 to 1979. These data were not used in

formulating the model. The results of the analysis are in good agreement with field
observation.



Gatemala Earthquake of February 4, 1976 (Seed et al., 1981)

According to step-1 of the approach, it is seen that liquefaction would occur in the
site represented by the boring #1 but would not occur in the site represented by the
borings #3 and #4. It is of very interest that the boring #2 falls just inside the
lower limit of the possible liquefaction as shown in Tab.2. And according to the step-2
of the approach, the probability that the site of boring #2 will liquefy is only 4.7%.
Obviously, such a small value means that liquefaction was impossible in fact (Chou,
1983),

Table 2. Results of analysis for Guatemala earthquake of February 4, 1976

Boring number By the Step-1 By the Step-2, p{E[E]} Field observation
#1 Liquefied 100% Yes
#2 Possible 4.7% Just No
#3 No 0 No
#4 No 0 No

Monte Negro Earthquake of April 14, 1979 (Talaganov, 1980)

1t is found that liquefaction would occur surely under the depth of 3m and that a
border line between sure liquefaction and possible liquefaction exists at 2-3m accord-
ing to the step-1. By the step-2, the probability that liquefaction did occur above 2m
is estimated to be D.40. Hence, it can be seen that a major part of the profile would
be liquefied, as shown in Tab.3.

Table 3. Results of analysis for Monte Negro earthquake of April 14, 1979

Depths (m) 2 3 4 5 6 7 8
SPT (N-value) 9 9 8 7 6 6 7
P{E[L}]} 0.4 1 1 1 1 1 1

Miyagiken-oki Earthquake of April 12, 1978 {Tohno, 1978)

The results of the analysis are shown in Tab.4 (Chou, 1983).

Table 4. Probabilities versus depth in Miyagiken-oki Earthquake

Site Depths (m) p{E[L]} (%) PIL] (%) Field Observation
2.3 42
3.3 24
4.3 46
A 5.3 21 92 Yes
6.3 56
7.3 0.09
8.3 8]

- . W = W = A . A W = e e . W S e S T e e T W e o ek mhy S e e e e ke Sy T e e e A e e et e e ke




COMPARATION WITH SEED'S SIMPLIFIED PROCEDURE

Comparation of the approach with Seed's simplified procedure was performed to discuss
the approach in depth.

Consider for example, a sand deposit at a depth of ém for which the water table is 1.5m
below the ground surface and which is subjected 10 cycles of ground shaking. A total
saturated density of 21.0 N/cubic cm, a buoyant density of 18.9 N/cubic cm above the
water table and a buoyant density of 11.0 N/cubic cm for this deposit are known.

The following values of maximum acceleration required to cause initial liquefaction for
given values of relative density can be determined by use of Seed's procedure as shown
in Tab.5. But, in the approach proposed here, the relative densities corresponding to
the values of maximum acceleration listed in Tab.5 can be obtained by use of eq.(19) or
Fig.3 (Tab.6).

Table 5. Required peak accelerations Table 6. Corresponding relative densities
by Seed's procedure converted by the approach here

Dr a max a max A Dr (%)
(%) (8) (8) (g) p=1 p=0
40 0.116 0.116 0.212 33 52
50 0.145 0.145 0.265 38 63
60 0.174 0.174 0.318 42 70
70 0.203 0.203 0.412 53 89

It is obvious that the values of the relative density in Tab.5 are located in the
middle of those values in Tab.6 between cases of p=1 and p=0. And the liquefaction
probabilities determined by use of the approach proposed are very low. This fact just
hints that it is initial liquefaction as in Seed's simplified procedure.

The observed cases of liquefaction from Seed and Peacock (1970) are summarized in
in Tab.7. It is seen that the results of the two methods both are coincided with the

field observation.

Table 7. Observed cases from Seed

a max Liquefy Depends on Liquefy
(g) Very Likely Soil & Magnitude Very unlikely
0.10 Dr < 33% 33% < Dr < 54% Dr > 54%
0.15 Dr < 48% 48% < Dr < 73% Dr » 73%
0.20 Dr < 60% 60% < Dr < 85% Dr » 85%
0.25 Dr < 70% 70% < Dr < 92% Dr > 92%
CONCLUSIONS

An alternative for analysing statistically uncertainties in the data from historical
cases where liquefaction was or was not observed during earthquakes is presented, using
of the elementary notion of sets. This is an attempt to develop a overall probabilistic
model for evaluating soil liquefaction.

The overall probabilistic approach, consisting of three steps, was formulated based on
the new model in which deterministic and empirical factors are excepted for the con-
sistency of the used concepts in probability theory.

The approach allows us to assess simply whether a given site is to liquefy or not and
what the probability is that liquefaction will occur, if expected maximum acceleration
of ground surface and SPT value, N or Dr, are known.

The expressions in this approach have been programed for practical convenience and
examined with some case studies. Further research is needed to consider more cases in



which seismic liquefaction hazards and geotechnical characteristics are well investi-
gated recently.
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