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HYDRODYNAMIC PRESSURE DURING EARTHQUAKES

Numerical methods are discussed to compute the hydrodynamic adimensional
Kotsubo-Bessel integral (Kotsubo, 1959)

t
S(w-t)= J[l/g]~A (t-u) +» Jo( wu ) w-du (1)
o
where A = seismic horizontal acceleration of the dam base

H = vertical depth of the reservoir

Jo= Bessel function of zero order

a = 1438.4456 m/seg = velocity of sound in water

g = 9.81 m/seg?= gravity constant

n=1, 2, 3,

t = tine

u = integer variable

a = méximun acceleration seismic factor related to g

w= wn= un-a/H= natural reservoir oscilation frequency

yn= m-{ 2-n — 1 )/2
m = 3.141592654
which allows to obtain the seismic pressure p(z,t) on a vertical dam face

at depth z using the series:



p(z,t)/(ax*to-H)

]
S M8

an/un -+ S(wn-+t) - cos(un-z/H) (2)
=1

where =z = resevoir depth
n+l
an= 2(-1)
to= volumetric weight of water

Methods

In ec (1), w= 2-n/T is the natural circular frequency and T is the
natural circular period of the ligquid media, in seconds; Jo( ) can be
expressed as: (Abramowitz, et al, 1965)
3
(%z?) (%z2)2 (%z?) o k
Jo(z)=1 - * - + o0 =3 [-%2?] /(k!)? (3)
(11)2 (21)2 (31)2 k=0

and with asymptotic approximations when z is large enough. However the
use of eq. (3) to compute eq. (1) is cumbersome because it is necessary
to repeat the computation for each t. This happens because Bessel is a
non linear differential equation

d?y 1 dy
+ — — + w2y= O (4)
dt? t dt

and its homogeneous solution is:
y= Cl-Jo(wt) + C2-:-Yo(wt) (5)

where Cl and C2 are constants and Yo() is the Bessel Function of second
kind of a zero order. This solution is the kernel of eq. (1) with C2= o
and this eq. (4) seems to have the equivalent non linear damping effect
of 1/(2:w-t), altough Newmark and Rosenblueth (1971) consider that water
in dams seems to behave with a <classical linear structural damping
between .1 to .2 on actual earthquakes despite the term 1/t in eq. (4).

Direct integration algorithms

A numerical method to compute eqg. (1) is to use linear variation in A( )
between two consecutive earthquake instants as a pulse and compute his
mathemathical effect on t. The results obtained using digital computers
available in 1965 are indicated, with xS in Table 1, and obtained by the
author and published by Newmark and Rosenblueth (1971). Other method, and
used here, is to compute the effect of a linear pulse with

§S= &t+[ Ai:(Jo<i>+2-Jo<i+%>) + Aj:(2-Jo<it+¥>+Jo<j>) ]/6 (6)

where Al and Jo<i> are computed at time ti, Aj and Jo<j> at time ti+l
and Jo<i+%> 1is obtained at half interval. Also &t= ti+i - ti is not
greater than w-6t = m/32. For this computation a personal computer was
used (1995). Results obtained for the first 12 sec data of El Centro
earthquake, may 18 of 1940, are in Table 1 as Smax. The values obtained
with each method are similar.



Double integration methods

It is proposed here to compute eq. (1) using an integral of the type:

2 [%n
Jo(V(z2-a?))= ——i[ cosh( a+cos ® )-cos( z+sin @ )-de (7)
m Jo

McLachan(1961) p 191, to apply any usual computational method for linear
structural response of Duhamel integral which has sin() in eq. (1)
instead of Jo. Thus, from eq.(7) with a=o it can be used in eq. (1)

2 [%nm 2 [%m
Jo(z)= ——| cos( z+sin ® )+d® = ——| cos( z-cos © )-de (8)
n jo m Jo
"\1 ’\w
2 cos( z°X ) 2 cos( z*v )
Jo(z)= dx = dv (9)
n V(1-x2) m Vi(v2-1)
Jo J1

(8a) and (9a) are related using x= sin © and V(1l-x?2)= cos @.

Thus, with z= w-u in eq. (8) then eqg. (1) can be stated as

t S
S(w-t)=2/ngJ A(t —u )-J cos( w+ru-sin ©® )-de-w-du (10)
o o

interchanging the integration sequence and using 1= sin®/sin®
qn t
S(w-t)=2/ng|(1l/sin®){ |A(t-u) - -cos(w+sin®-u) -w:sin®-du]-de (11)
o o

the following advantages and interpretations are obtained:

Thus, with ¢= sin ©, allows the use of adimensional velocity response of
undamped single linear system in the following form:

t
wV(w-g-t)= l/gJ A(t —u )-cos( wegp-u ) -w-¢-du (12)
o

This eqg. (12) gives the wusual advantages of traditional numerical
computing methods to obtain the time velocity response of undamped single
system in an actual earthquake and obtain:

T
S( wet )= 2/nJ [WV( w-t-sin ©® )/sin @ ]-:d® (13)
o

It is always finite for any actual earthquake because this eq. (13), with
r= sin ® and V(1l-r?)= cos ©, can be stated as



1 1

2|wV{ w-t-r } 2/1wV{ wet-vV(1-x) }
S( wet )= - dr = - dx (14)
g r-v(l-r?) 14 XV (1-x2)
o o)
and with r=o0 or x= l-r= 1 must be:
wV( o )= o (15)

at the beggining of the earthquake. And when r=1, eq. (1l4) it is finite
because in many mathematical texts it can be found:

1 dr
—— — = arc sin 1=

o V(1l-r?)

(16)

NI

this ensures finite values and results of S() although not necessarily
small, because ec. (14) has no limit with wV= constant.

Other interpretation for a computing method is to use the equation:
Jo(z)= cos 2z + 2+:J2(2) — 2-J4(z) + 2-J6(2) + ~--: (17)

which implies the use of ec. (12) with ¢= 1 and result

o nft
S(wet)= wV(w-t) — 2/g=(-1) J A( £t —u )+J2n(w-u)- -w-du (18)
n=1 o}

The previous equations imply no structural equivalent damping on the
interactive or reflective dynamic stress waves at the wall face or bottom
and also states no upper limit to the pressure resulting from a resonant
earthquake’s natural effects. This phenomena means that water has no
equivalent linear structural damping and its effects are related to the
undamped structural response. This discloses that in cities with soft
soil and water saturation, the pore pressure can develop strong effects
as in Mexico City and also in coastal cities with a bay. In addition to
the pressure of seismic waves, water saturation in sand induces the
problem of soil liquefaction due to the dynamic increase of the internal
liquid pore pressures. This shows that further research in water pore
pressure in saturated soils, wave propagation and local soil
amplification is needed. This also explains why an upper bound for the
seismic design coefficients has not been found or stated in recent years.
The results obtained here calls for research and the use of the complex
cosine part of the Fast Fourier Transform, FFT, to obtain the velocity
response related to water or pore dynamic pressure.

STRUCTURAL UNDAMPED VELOCITY RESPONSE

To compute eq. (12) the Newmark B Factor or a similar method can be used
and this method can be stated in the following six steps:
1. At t= ti, the acceleration A= Ai, the velocity V= Vi and
the displacement D= Di are known at time ti.
Let &= ti+l - ti, assume an A’'= Ai+l and then
2. Compute V’'= %.( A + A’ )6



Table 1. Response Smax and w-V/g max to
El Centro earthquake, may 18, 1940

T sec w=2m/T Smax t sec Hm xSmax t sec w-V/g t sec
.025 251.327 .4686 2.007 5.7 . .410 12.028
.05 125.664 .5189 1.924 11.4 . . .573 5.498
.1 62.832 .5664 2.45 22.9 .356 2.32 1.50 9.766
.15 41.888 .4494 2.45 34.3 .483 4,83 2.753 4.901
.2 31.416 .6695 2.652 45.8 .560 2.65 1.875 3.150
.25 25.133 .5204 2.007 57.2 .433 2.01 1.297 2.948
.3 20.944 .5401 2.007 68.7 .453 2.01 .912 8.617
.35 17.952 .5338 2.27 80.1 .491 2.39 1.155 2.519
.4 15.708 .6234 2.27 91.5 .543 2.27 2.148 11.919
.45 13.963 .5999 2.27 103.0 .615 2.27 2.135 11.808
.5 12.566 .6602 2.27 114.4 .657 2.27 1.367 2.976
.55 11.424 .5229 2.27 125.9 .563 2.32 1.937 5.343
.6 10.472 4244 2.32 137.4 .452 2.32 1.445 11.988
.65 9.666 .3404 1.855 148.8 . . .827 2.320
.7 8.976 .3436 1.855 160.2 . 1.189 9.123
.75 8.378 .3367 1.855 171.7 . 825 12.133
.8 7.854 .3233 1.855 183.1 .633 11.207
.85 7.392 .3079 1.855 194.6 . . 1.113 12.113
.9 6.981 .2905 1.855 206.0 . . 1.080 11.227
.95 6.614 .2721 1.855 217.5 . . 1.229 12.113

1.0 6.283 .2538 1.855 228.9 . . .841 4.618

1.05 5.984 .2362 1.855 240.4 . .723 4.665

1.1 5.712 .2194 1.855 251.8 .546 4.876

1.15 5.464 .2208 2.708 263.3 .498 9.053

1.2 5.984 .2208 2.708 274 .7 .504 11.780

1.5 4,189 .2008 2.708 343.3 .362 11.808

2.0 3.142 .1629 5.454 457.7 .186 11.808

3.0 2.094 .1342 5.51 686.7 .303 11.434

4.0 1.571 .0913 4.416 915.6 .134 4,416

5.0 1.257 .0753 2.893 1144.4 .076 4,97

Compute D’=D + &V + (%-B8):62-A + B+62-A’
Compute new A’ = -2.y*w+*V’— w2-(D’'~ Do) -As
If the new A’ differs from previous, repeat steps 2 to 4
. Now make Ai+l= A’, Vi+l= V'’ and Di+l= D’ and increase t.

LW

Here pu 1is the damping coefficient, w the circular frequency and Do is

the cuasi-static displacement due to a force time dependent. The B factor
is a coefficient to obtain an &rea between A and A’ multyplied by its
centroidal distance from ti+l. B can have values between % to 1/6, that
is %% to %.-1/3, the last done is for linear relation between A and

A’. Therefore B= 1/6 1is used here. The response values at ti and ti+l
are related in matrix form as

1 2uw w2 A= o] o oj|A|+ {w2Do- As
-%5 1 o v’ 5.6 1 ol |V o (19)
-B&2 o 1 D’ (%¥-B)s2 & 1/|D



Solving ec. (19) to eliminate iterations, for & at ti to ti+l=ti + &
with Do= o and Q= 1/[ 1 + &we (B8 -w+u) ]

A’}|=Q —&wu+(%-B)6w] —2uw—56w? -w?2 A-Q| 1 |As
v’ X6[1-w282(%-28)] 1-(%-B)s62w2 —%&w2 ||V 58 (20)
D’ 82[ (%-B) (1+ubdw)-Bubdw] &§+(1-2B)ud2w 1+uédw| D B2

and with no damping, i.e. u= o, result Q= 1/( 1+B62w? ) and

A’ =Q -82w2 (%-83) —-6w?2 -w? A|l-Q] 1 |As
v’ LE[1-w282(%-2B)] 1—(%-B)62w?2 —kéw2||V %5 (21)
D’ 82 (%-P) 8 1 D B&?

with B= 1/6, then Q= 1/( 1 + 8§2-w2/6 ) and can be used:

A’ |=Q -62.w2/3 -éw? -w?2 Al-Q 1 |[Aas
v’ X6[1-w2:82/6] 1-62w2/3 —-%&5-w2 ||V %8 (22)
D’ &62/3 1e) 1 D 52/6

this eq. (22) allows to compute eq. (12) for different w and then obtain
S with eq. (13), eq. (l4) or eq. (18). Here only the values of Vmax
with ec. (22) where obtained. They are shown in column w-V/g in Table 1
with its instant t of appearance. This also calls for further research.

CONCLUSIONS

-Computation of the hydrodynamic response can be done using a common
personal computer.

-The hydrodyrnamic Bessel kernel Jo() is related mainly to a cosine
harmonic function and implies that hydrodinamic response is relative to
the usual velocity spectra without damping in about 1/3.

-Due that the equations are non linear, the usual damping effect is lost
and there are no lower limit for seismic water response.

It seems the liquid phenomena is related to subsoil compressibility and
void relatior in saturated media with actual pore pressure.

*Similar methods can be applied and used to obtain results on the problem
of foundatior response and soil structure interaction.
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