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ABSTRACT

A nonlinear dynamic response calculation method is presented, based on step by step response calculation in the
time domain for which equilibrium of the dynamic forces at the end cf each time increment is established by
minimisation of the total potential dynamic work. The dynamic loading is generated as a series of cross correlated
earthquake histories defined by base frequency envelope of typical recorded earthquake histories with inclusion
of main frequency components of the structure.

The analysis method is applied to the numerical model of a 327 metres tall guyed mast with five levels of stay and
a cantilever at the top. In the numerical model, the mast shaft and its cables are all modelled together and
analysed as a whole single unit. Three ground accelerations in two horizontal and one vertical directions are
generated and applied to the mast. The response of the structure to generated strong motion earthquakes is
calculated. A mass-spring system model of the mast is also constructed with the masses concentrated on the stay
levels, the cables are represented by their spring stiffness. Comparative study of the results obtained from
nonlinear dynamic analysis and conventional mass-spring system approach is made and presented.
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LINEAR AND NONLINEAR ANALYSIS METHODS

Guyed masts are highly dynamic sensitive structures and will undergo large deflections under dynamic loading,
this introduces geometrical nonlinearity and effects the calculation of forces in cables and therefore the reactions
at the base of the mast. Strong motion earthquake introduces base vibration to the cable anchor blocks and the
mast base, causing the cables to vibrate and produce large changes in the tension of the cables. These fluctuations
should be considered in the design of the shaft and the base foundation. The method developed and used for
nonlinear dynamic response analysis of the mast to strong motion earthquake in this work is based on step-by-step
integration of the total potential dynamic work (Buchholdt ez al., 1986).

The concept of dynamic response analysis by energy minimisation method for large structural assemblies,
(Moossavi Nejad, 1985), comprises the following four parts.



1- Formulation of the total potential dynamic work for the assembly.

2- Difference equations expressing the relationship between displacement, velocity and acceleration
with respect to time.

3- A minimisation scheme to minimise the total potential dynamic work.

4- Description of the dynamic loading either by a function or as a series of tabulated time histories.

Complete formulation of the method is given by (Moossavi Nejad, 1985) and is not repeated here. The
implementation of the method related to the Newmark's B=Y4 differerce equations, (Newamk 1959) and the
conjugate gradients minimisation method, is employed to calculate the dvnamic response of the following guyed
mast to a generated strong motion earthquake. The earthquake his:ories are generated by applying cross
correlation to typical recorded earthquake histories containing frequency components of the mast. The
earthquake history in the Y-Direction and its frequency spectrum are given in Figs. 1a and 1b respectively.
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Fig. 1a Earthquake history. Fig. 1t. Frequency spectrum of earthquake.

The frequency domain method used for linear analysis of the mast is based on decoupling of the equation of
motion for a linear system subjected to a support motion x,(t) with acceleration aX(t) as follows.

MX + CX + KX = Max (t) (1)

Where M, C and X are the mass, damping and stiffness matrices for the system and X, X and X are the
displacement, velocity and acceleration vectors respectively. o is a constant that defines the magnitude of the
peak acceleration. Let Z be the matrix of normalised eigenvectors with respect to M, then for q, 4, and § as
decoupled displacement, velocity and acceleration, given as X=Zq, X=7§ and X‘Zq, eq. (1) can be written as:

Z™MZE + Z'CZ4 + Z'KZq = ZMas(t) Q)
andfor Z™Z=1, Z'CZ=2{(w,and Z'KZ= w* the decoupled equation of motion becomes
4+ 28wd + wiq=ZMaX|t) (3)

where £ and w are the damping ratio and natural angular frequency of the system respectively. Using the power
spectral density function and peak acceleration for a recorded or generated earthquake history and its variance
o? together with statistical factor x (Clough 1993), the value of q can be calculated from q =xo and X =Zq.

NUMERICAL MODELS

The guyed mast selected for the numerical analysis is a 327m tall radio mast with five levels of stay and a 27m
cantilever on top. The shaft of the mast is triangular in section with solid round legs and with a constant width



of 3m. The numerical model has 82 cable nodes and 28 rigid nodes with 372 translational and 129 rotational
degrees of freedom. The properties of stays and the mast shaft are given in Tables 1. and 2. respectively.

Insulators each weighing 145 kg are applied to the stays as given in Table 1.

Table 1. Properties of stays.

Level Height E-Module Area Initial Tension| Weight Cable Diam. | Base Radius | Insulators Ins. weight
(m) (N/m*2) (m*2) (kN) (N/m) (m! (m) Per stay (kg)
1 300 1.6E+11 [1.300E-03 50 104.00 0.046 225.000 5 2175.0
2 240 1.6E+11 [1.300E-03 50 104.00 0.046 180.000 5 2175.0
3 180 1.6E+11 |9.650E-04 40 77.40 0.040 180.000 5 2175.0
4 120 1.6E+11 {9.650E-04 30 77.40 0.040 85.000 3 1305.0
5 60 1.6E+11 |7.660E-04 30 61.30 0.035 85.000 3 1305.0
Table 2. Properties of the mast shaft.
Level Height E-Module Area G-Module Weight ot lyy 1zz Shaft width
(m) (N/m*2) (m*2) (N/mA2) (N/m) (m*4) (m"4) {(m*4) (m)
Cantilever 327 2.05E+11 | 0.03393 |7.89E+10 4807.0 0.04 0.0508938 |0.0508938 3.000
1 300 2.05E+11 | 0.03393 |7.89E+10 4807.0 0.04 0.0508938 |0.0508938 3.000
2 240 2.05E+11 | 0.04618 |7.89E+10 5788.0 0.04 0.0692721 |0.0692721 3.000
3 180 2.05E+11 | 0.04618 |7.89E+10 5788.0 0.04 0.0692721 |0.0692721 3.000
4 120 2.05E+11 | 0.06032 | 7.89E+10 6867.0 0.04 0.0904779 |0.0904779 3.000
5 60 2.05E+11 | 0.06032 |7.89E+10 6867.0 0.04 0.0904779 |0.0904779 3.000

A simplified mass-spring system model of the mast, containing 6 lumped masses concentrated on stay levels of
the shaft is also constructed for frequency domain analyses. The line diagram of the mast and the numbering
arrangements for the nodes and members together with a three dimensional view of the mast showing the stay
arrangements are given in Fig. 2. The figure also contains the numbering arrangements for the mass-spring system
model.

NUMERICAL ANALYSIS

The guyed mast is subjected to static analyses, eigenvalue analysis and linear and nonlinear dynamic response
analysis as described below. The design of the mast is based on British Standards BS8100 Parts 1 and 4, for a
wind speed of 45 nv/s.

Static Analyses

To establish design forces and deflections, static analyses of the mast were carried out for the self weight and
static wind load in the x and the +ve and -ve y directions, see Fig. 2. Concentrated static load of 50 kN was
applied to each of joints 97, 100, 105, 110, 115 and 120 in turn and for each case the deflections of all these joint,
referred to from now on as the lumped mass joints, were noted in a table. The values in the table, ie the
deflections, were then divided by the load to provide the flexibility matrix for the mass-spring system model. The
stiffness matrix for the model was obtained from the inverse of this matrix.

This method of calculation of stiffness matrix for the model is fundamentally different from that obtained by the
usual assembly of the stiffness matrix from the properties of the shaft and the assumed stiffness of springs
representing the cables. In this method, since the static analyses are carried out on the full model of the mast, the
effects of the stays and their change of tension are implemented in the stiffness matrix directly. To verify the
stiffness matrix, a set of direct point loads were applied to the mast column and to the relative nodes of the mass-
spring model, the resultant displacement vectors are given in Table 3. and show less than 7% difference between
the two. The calculated stiffness matrix is given in Table 4. The diagoral lumped mass matrix, representing the
effective mass of lumped mass joints was also constructed and is giver. in Table 5



Table 3  Static deflection, (m), of lumped mass joints
for the guyed mast and the mass-spring model.

Node 97 100 105 110 115 120
Load (kN) 200 600 300/ 300 300 30.0
Guyed Mast 09885 0.7560( 0.3749| 02078 0.1413] 0.0762
Mass-spring Model [ 0.9400[ 0.7150{ 03500 0.1960| 0.1380] 0.0760
% Difference 49064 | 5.4233| 6.6418] 5.6785| 23355 0.2625

Table 4 Stiffness matrix of the mass-spring system model.

527600. | -837900. | 408000. | -119400. 33470. -9332.
-844500. | 1533000. | -846000. | 327400.| -92760. 28670.
K= 406800. | -849800. | 1001000. | -657400. | 289900.| -76030.] N/m
-122300. | 338200. | -662500. | 1090000. | -742€00. | 309400.

31160. | -90870. | 293000. | -740500. | 1189C00. | -730500.

-11820. 30740. | -89010.| 316900. | -744200. | 1194000.

Table 5. Mass matrix of the mass-spring system model.

6735. 0. 0. 0. 0. 0.
0. 21875. 0. 0. 0. 0.
M = 0. 0. 32835. 0. 0. 0. kg
0. 0. 0 35835. 0. 0.
0. 0. 0. 0 39135. 0.
0. 0. 0. 0. 0. 42435.

Eigenvalue Analysis

An eigenvalue analysis of the full mast was carried out and provided the full range of 372 frequencies of the mast.
These frequencies started from 0.159 Hz and continued in bands of close frequencies to 10.0 Hz for the first 200
modes. The study of mode shapes related to these frequencies showed the first six modes of the mast shaft being
in the range of 0.3 to 3.0 Hz. Unfortunately, the available space does not permit the presentation of the mode
shapes.

Utilising the stiffness and mass matrices of the mass-spring model, its frequencies and mode shapes were
calculated by an eigenvalue analysis and are given in Table 6.

Table 6. Frequencies of the mass-spring model, Hz.

Mode 1 2 3 4 5 6
Frequency Hz 0.295 0.352 0.506 0.813 1.257 2.019

Dynamic Analysis

The guyed mast was subjected to earthquake loading in 3 directions. Strong motion histories were generated for
30 seconds in the X, y and z directions, with intensities of 0.3g in the horizontal and 0.2g in the vertical direction,
a sample history is shown in Fig. 1a. The nonlinear dynamic analysis was carried out for a period of 120 seconds
to allow the structure to respond to all frequency components and to contain the peak response of the stays and
the mast shaft. A recording of the maximum amplitude of each node in all 3 directions and the maximum force
encountered by each member were kept together with their time of occurrence.



The mass-spring model was analysed for earthquake loading, using the linear frequency domain method given
above. The peak acceleration factor, «, was taken as 0.3 and the frequency spectrum of the generated earthquake
history for y-direction was used to calculate the variance and other statistical factors for the frequency domain
calculations. In order to investigate the effect of damping, both linear and nonlinear dynamic analysis were carried
out for two values cf logarithmic damping, 8= 4% and 6= 8% equivalent to damping ratios £ = 0.006 and £ =
0.012. The peak amplitude of lumped mass joints were recorded for the four cases analysed and are given in
Table 7. Response cf joint 4, middle of the top cable, in y-direction and its frequency spectrum are shown in Figs
3a and 3b, the response of joint 100, top stay level on the shaft, and its frequency spectrum are given in Figs. 4a
and 4b. The fluctuation of tension of top level stay and its frequency spectrum are shown in Figs. 5a and 5b.

Figure 6. shows the movement of joint 100 in the x-y plane.

Table 7. Maximum amplitude of response (m) to earthquake loading
for linear and nonlinear dynamic response analyses.
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Fig. 2. Line diagram of the guyed mast model and the mass-spring system model.
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Fig. 6. Movement of joint 100 in the x-y plane.

To investigate the effect of earthquake loading on overall design forces of the mast, a comparative listing of
maximum forces due to self weight, design wind load and the earthquake loading is made in Table 8. The table
shows the maximum force in the base of the mast, the maximum bending moment of the mast shaft and the
maximum tension at each stay level.

Table 8. Maximum force, bending moment and tension of the mast.

Max. Force (kN) |Max. Moment (kN) Max. Tension (kN) in Stay Level
Shaft Base Mast Shaft 1 2 3 4 5
Static Self Weight 3560 N/A 205.0{ 179.0/ 140.0 77.0 70.0
Static Design Wind 4521 1175| 407.0| 375.0/ 310.0| 250.0| 232.0
Dynamic Earthquake 5900 3164| 327.0| 278.0/ 311.0] 210.0] 237.0
CONCLUSIONS

The results of time domain dynamic response analysis, unlike their static or frequency domain analysis
counterparts, are complex and require much effort to extract its multifold layers of information. Although a
record was kept of maximum deflections and forces within the time duration of the analysis, these values are not
appropriate for the design of structures, since the maximums do not occur at the same time. In fact if these values
are used for design purposes, the structure will be over designed. The way to overcome this problem is to keep
a record of forces in all members when a maximum axial force, shear force or bending moment develops in any
member. In other words, to freeze the structure at that time and use its instantaneous forces for design to a
particular force. However, presentation of such results for a large structure will be rather impractical. Time
domain analyses provide understanding of the behaviour of the structure under dynamic loading, rather than
simple listing of the results. This, in many cases, can be achieved by animation of the movement of the structure
and its various modes of vibration.

During the course of this work, many computer runs were made for different parameters of time history
generation and properties of the structure such as damping. The summary of maximum amplitudes and forces
are given in Tables 7. and 8. Table 7 shows that, in general, the amplitudes calculated by frequency domain
analysis are larger than those calculated by time domain analysis. In the time domain analysis, the cable stays
restrict the movement of the mast shaft at stay levels but the cantilever vibrates with a large amplitude. In Table
8. the effect of vibration of cables on the forces in the mast shaft can be seen, although the tension in cables due
to earthquake loading, shown in Table 8., are smaller than those of design wind load, they relate to lateral



deflections of about one third of those produced by wind loading. This means, if the amplitudes produced by
dynamic excitation reach those of design wind, the tension in cables would be much larger.

Although the stiffness matrix constructed for the mass-spring model provided good correlation between the static
deflections of the guyed mast and the small model, the results obtained from the linear dynamic analyses of the
mass-spring model are not comprehensive enough to give good comparison with the results of time domain
analyses. In particular, the six degrees of freedom of the small model related to lateral movements in one
direction only were not sufficient. To achieve more conclusive results, the degree of freedom, and not the number
of nodes, must be increased for the mass-spring model to contain movements in the other two directions. This
require the construction of much larger stiffness matrix by the method described in the Static Analyses section.

REFERENCES

Buchholdt H. A. Moossavi Nejad S. E. and Iannuzzi A. (1986). Nonlinear dynamic analysis of guyed masts
subjected to wind and guy rupture. Proceedings of the Institution of Civil Engineers, Paper 9015, Part 2.

Clough R. W. and Penzien J. (1993). Dynamics of Structures. McGraw-Hill.

Moossavi Nejad S. E. (1985). Implementation of wind loading in time domain dynamic response analysis by
minimisation of total potential work. Proceedings of Asia Pacific Symposium on Wind Engineering.
University of Roorkee, Roorkee, India

Newmark N. M. (1959). A method of computation for structural dynamics. Journal of Engineering
Mechanics, Division ASCE, Vol. 85, No EM3.



