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ABSTRACT

A simple method of analysis based on the physically approximate modelling is presented for computing the axial and lateral
impedances of pile groups installed in a homogeneous surface stratum lying on rigid bedrock, where the impedances play an
essentially important role in coupling to structures with pile foundation exposed to seismic excitation. The presented simple
method for dynamic impedances of pile groups possesses the remarkable features that the behaviour of the wide range from stiff
and short piles to flexible and long piles is considered in the simple expression with exponents, computation of multi-order
inverse matrix or characteristic equation is not required, and the presented mothod is easily executed by the simple closed-form
expressions and is applicable to various arrangement of floating piles in a group. The verification of the presented simple method
is performed from comparison with the rigorous solution for the dynamic impedances of pile groups oscillating harmonically.
The simple method is sufficiently accurate and readily useful in practical application without much computational effort.
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INTRODUCTION

In recent years, in order to predict responses of structures with pile foundation exposed to seismic excitation, a amount of work
has been done on estimation for dynamic impedances of pile groups which play an important role in coupling to superstructures.
It is desirable in practical situation that the dynamic responses of structures with pile foundation are readily predicted in
consideration of the complex pile-soil-pile interaction. Simplified estimations for the dynamic impedances of pile groups have
been performed mainly in connection with 1) the dynamic Winkler spring along the individual single pile and 2) the pile-to—pile
dynamic interaction as follows:

1) The dynamic Winkler springs along the individual single pile are necessary for evaluation of subgrade reactions which are
expressed as the product of spring constant and soil displacement on the pile circumference. The Winkler assumption has been
early introduced for single piles, and the Winkler spring constants have been analytically obtained from the dynamic plane strain
solution of the soil without the static state by Novak et al. (1978). The Winkler spring constants obtained consistently in the
static and dynamic states have been also estimated from physical and analytical approximation based on the dynamic Kelvin's
solution by Nozoe er al. (1992a, b). Several researchers have presented simple approximations of distributed springs and
dashpots.

2) The pile-to—pile dynamic interaction affects substantially the behaviour of pile groups. The interaction factors are defined as
the ratio of the displacements of receiver pile to source pile through the response of the soil. The interaction factors have been
approximately estimated as the soil displacements at the axis of the receiver pile on the basis of the radial propagation of the
cylindrical waves, and a simple method for computing the dynamic impedances of pile groups from the results of single piles has
been proposed by Dobry et al. (1988). Afterward, Gazetas et al. (1991) have pointed out that the assumption of synchronous
wave emission introduced into the interaction factor is unsatisfied for much longer and softer piles. Makris et al. (1992) have
indicated that the interaction factor as the response of the receiver pile to be infinitely long becomes smaller than the interaction



factor as the response of the soil at the axis of the pile. The interaction factors are approximately expressed in the form involving
the ratio of the rigidities of soil to pile by Hijikata et al. (1994).

The above researchers have differently developed simple methods for the dynamic impedances of pile groups on the basis of the
method of Dobry et al. (1988). On these simple methods, as the number of pile in the group 2 is larger, the computaional
effort of the inverse matrix of the 1 th order is used up more costly.

By contrast simplified methods for the dynamic impedances of pile groups have been presented employing the Winkler springs
and the interaction factors estimated analytically on the basis of the plane strain solution by Nogami (1983) and of the Kelvin's
solution by Nozoe ef al. (1992a). Since the characteristic equation of the 21 th order must be solved, much computational effort is
also used up.

In this paper, a simple method for the axial and lateral impedances of pile groups is presented physically and analytically, and
adapted for flexible and long piles as well as stiff and short piles without computation of the inverse matrixthe of the 22 th order
or without solution of the characteristic equation of the 22 th order.

DESCRIPTION OF MODEL AND FORMULATION

An analytical model of a pile-soil-pile system is illustrated in Fig. 1 as the cylindrical and Cartesian coordinates. The model is
considered for a floating pile group installed in a surface stratum lying on rigid bedrock under vertical and horizontal vibrations.
The soil deposit is elastic, homogeneous and isotropic with the linear hysteretic damping. Each pile in the group is identical and
assumed to be elastic rod and beam. The pile j is subjected to the hormonic loadings exp(i @ ¢) at the pile head.
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Fig. 1. Model of pile-soil-pile system

The equations of motion and the constitutive relationships with respected to the vertical and horizontal displacements Wre; and
U ;, respectively, and the rotational angle R e are expressed as
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where i is the imaginary unit, the time factor exp(i w f) is abbreviated for convenience, and Z2 ¢ = 2z — Ls. Nr; and
Qr; are axial and shear forces, respectively, and M ; is bending moment. © » is mass density of pile, Er is Young's
modulus of pile, A » is cross sectional area, and I ¢ is second moment of area. Pv;i and P u; are the total soil reactions
per unit length along the shaft of the pile in the Z and X directions, respectively. Herein the shearing deformatation and the
rotational inertia force of the pile are neglected to be substantially small.

The total soil displacements W; and U on the pile circumference, the total soil reactions Pv; and Pu; along the pile
shaft, and the total soil reactions N's; and @ns; at the pile tip in the 2 and X directions, respectively, can be obtained
from superposing the behaviours of the soil in the solitary pile j-to—soil system and in the other solitary pile k—to-soil system:
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Rotatinal quantities of the soil, herein, are not taken into account because the quantities may be negligibly small.

By solving Egs. (1), (2a) and (2b) to take account of Egs. (3) to (5), of the continuity condition of the displacements between the
pile j and the soil, ie. We;=W; and Ur;= U, and of the boundary conditions at the pile head and tip, the impedance
matrix [ K ] referred to the rigid massless cap of the pile group is obtained from the following definition:

Ne¢ K$v, 0, O We
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where N¢, @c and Mc are vertical, horizontal and moment loadings harmonically acting at the middle point of the cap,
respectively, and then We, Uc and Rc occur as the corresponding responses of the cap.

PHYSICALLY APPROXIMATE MODELLING

In the boundary-value problem of the above analytical model, the exact solution of the soil reaction and the pile~to-pile
interaction through the soil as three dimensional continuum requires the huge computational process and may be rejected in the
practical application. Thus the surrounding soil is assumed to be the Winkler type medium introduced by Novak et al. (1978) as
a physically approximate modelling for the soil. The soil reaction acting on the pile is simply expressed as the product of the
dynamic Winkler spring constant and the displacement of the soil. The soil reactions Pv;; and Pua;; along the pile shaft,
and Ns;; and Qs at the pile tip occur due to the soil displacements Wi; and Ui with the vertical and horizontal
motions of the solitary pile j. That is

Pv;;i=KcvW;; and Paii=KcuUs; )
Ns;i;=KavW;; and Qs = Ksa Ui (8)

where Kcv, Kcn, Ksv and Ksn are complex spring constants, of which real and imaginary parts are modelled as spring
and dashpot to be dependent on frequency, respectively. K cv and K cu are analytically derived in the closed form from the
solutions approximately satisfied the conditions of free surface and circular cross section to remain during motion on the basis of
the dynamic Kelvin's solutions by Nozoe ef al. (19923, b). Kev and Kes are also obtained as the simple expressions
calibrated from Kausel's semi-analytical formulae for a rigidly circular foundation on a stratum over rigid bedrock.

By contrast the motion of the other source pile k affects into the behaviour of the receiver pile j due to the pile-to—pile dynamic
interaction through the soil. The soil reactions P vix and P ajx along the pile shaft, and Ns;« and @=»;« at the pile
tip due to the motion of the other solitary pile k are approximately derived from the equations of motion and the constitutive
relationships for a soil column, which replaces the pile j for no reflection of the incident wave on the receiver pile j, as well as
Egs. (1) and (2) of the pile:
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where © s is mass density of soil, Es is Young's modulus of soil, A s is circular cross section and I s is second
moment of circular cross section. These approximate estimations can be utilized for d o= @ I o/ Vs = 0.5 in which Vs is
shear wave velocity of soil.

The soil displacements Wi« and U« on the circumference of the receiver pile j are approximately evaluated at the axis of
the soil culumn replacing the pile j from the wave emission of the soil due to the soil displacements Wk« and Uxx on the
circumference ( I = I o) of the source pile k, and are expressed as

Wie=Tvi«Wer and Uic= TuixUxx 11

Although the interaction factors Tv;e and Tus« have been derived from the same solutions as the above estimated
Winkler spring constants by Nozoe et al. (1992a), herein, the interction factors are utilized to be partially calibrated the simple
expressions adopted by Dobry et al. (1988) for the sake of the more simplicity. Thus the interaction factors are expressed by
Jocating the axis of the pile k at the origin and the axis of the pile jat ( I, 0)=(Six, 0 i)



Tviv=¢ (Six) and Taic= $(Six)cos’ O ixt ¢(Six)sin®0 (12)

where also Tv;c=1land Tuix=1.
The attenuation functions @ ( I ) and ¢ ( ) in Eqgs. (12) are simply expressed as
172

qﬁ(r):[r—’o—] exp[— (£ + i)K (r — Io)] (13a)
¢(r)=[%] exp[— (£ + i)k s(r — I o)] (13b)

where wave numbers: £ .= @/ Vva and £ s= w/ Vs, Lysmer's analog wave velocity: Via=34/[7 (1~ v s)] Vs,
and shear wave velocity: Vs= (/0 s) 172 1 and vV s are shear modulus and Poisson's ratio of soil, respectively. £ is
ratio of hysteretic damping in the soil and defined as complex modulus « *= @ (1+2if). The wave emissions propagate
approximately with V'va as the compression—extension wave in the direction of horizontal loading, and with V's both in the
perpendicular to the direction of horizontal loading and in the radial direction under vertical loading,

DYNAMIC IMPEDANCES OF PILE GROUPS

Under the above physical approximation of the analytical model, the equations of motion of the pile j are expressed by the soil
displacements W;; and Ui; due to the motion of the solitary pile j in account of the continuity condition between the
displacements of the pile j and the total soil displacements, then the pile-soil-pile interaction problem arrives at the eigen —value
problem with respected to Wi and Uis.

Now the soil displacements Wi ;i and U are assumed as the following functions.

Wsszz-vsexp(Tva-) and Ujj:ZHjCXp(—)t_HZP) (14)

By superposing Eqs. (14) over the group of B piles according with Eqgs. (3) in account of Egs. (11), the total soil
displacements W;and U; are obtained:

W;=X TijZVjCXp(TV ze) and U;=1X TijZﬂjCXp()k—H Zr) (15)
k=1 k=1
Moreover by substituting Egs. (15) into Egs. (1), (2a) and (2b) in account of We; = W, and Ur;= U, the complex
characteristic equations of the 22 th order yield to

(Av[Bv]+[Cv]){Avi}={0} and (An*[Bu]+[Cu]{An;}={0} (16)

From analysis of Egs. (16), the eigen—values of the / th order: 2 v, and A my , and the corresponding eigen—vectors {—Ev,' L}
and { A s} are determined. Thus the solutions of the soil displacements Wi and U, are expressed as

Wjj:ZZVjLW(A_VLZP) and UijEZHjLU(THLZF) amn
1=1 i1=1

where W( Aviz r) and U(_i_ my Z ) are general solutions of the / th order, and the including integral constants are
determined from the boundary conditions of the pile head and tip.
The dynamic impedances of pile groups can be computed by the above simplified method.

Since the above simplified method for the dynamic impedances of pile groups is compelled to solve the complex eigen-value
problem of the 21 th order, its computation becomes troublesome as the number of pile 2 in the group increases. With the
intention of computing easier, herein, the physically approximate modelling assumptions are introduced that the subgrade
reactions along the shaft and at the tip of the receiver pile j are omitted to be negligibly small, and the inertia of pile is ignored
in the interesting low frequency range. Consequently the above eigen—value problem corresponding to the soil displacements w
ii and Uj;i becomes identical with those corresponding to the pile displacements We; and Ue;.

By assuming also the pile displacements We; and Ur; as the following functions,

Wei=Aviexp(T Avze) and Uri=Auiexp L1 Fi )2 nzer] (18)

the characteristic equations with respect to the vectors { A v} and { A u;} are reduced as
{Avi}=(A v/ a)* [Tvix{Ave} and {Aw;}=(Aw/B) [Tus]{Aunx} 19)
wherea = (Kcv/EvAe)'"* 8 =[Kcu/4ErIe)]'"* and ErAr and E» I » are axial and flexural rigidities,

respectively.
By solving Egs. (19), the pile displacements We; and Ur; are also expressed as

ij:ZAv”W(lnzP) and UPjZEAHjLU()\HLZP) (20)
1=1

1=1

The general solutions of the  th order: W( A vi z ) and U( A n1 Z ¢) with the pile groups become the same with the
individual single piles. The additional simplifying assumptions are introduced that the pile head is rotationally restrained, and the



subgrade reactions of Egs. (8) at the tip of the source pile j are ignored. Consequently the solution respectively satisfied with the
boundary conditions at both head and tip of the pile with regard to each mode can be obtained as the trivial solution.
For the pile head, the axial and lateral displacements, and axial and shear forces are simply expressed:

{ngj}—_—[AVjL]{W'i} and {Nl’ei}:[AViL]{KVLWf} (21a)
{Ugs}=[Ar: ){Ul} and {QFi}=[Ans  { K UT} (21b)

where Kv; and Ku, for each mode are equivalent to the axial and lateral impedances.
By forcing {W#:}={Wc}, {U8:;}={Uc} and {R+}={Rc}= {0} from the condition of the rigidly capped
pile group, each modal displacement at the pile head yields from Egs. (21a) and (21b):

(Wiy=[Avii] "{We} and (UT}=[Ans] {Uec} (22)

where [ ]~ 'indicates inverse matrix.
From the equilibrium between the external loadings and the sum of resistant forces of the pile head in the group,

Ne={1}T{N&;}={1}(Kvi[ I+ [Avi (Kvi —Kv)[Avii] Y We}

S{L}(Kvi[IP1}We=nKviWe (23a)
RQe={1}7{Q%:}={1}7(Ku[ I+ [As; (K~ Ka))[Ani ] ") Uc}
S{1}(Kar[ID{1}Uc=n0KuUec (23b)

where {1 } and {1 }7 are unit vector and its transpose of the 2t th order, and all components are unity. [ I ] is unit matrix of
the 11 th order.

For computing the axial and lateral impedances of pile groups by simpler method than the above simplified method, the cigen
_value and vector of the first order ( ! = 1) are adopted only. The underlined terms in Egs. (23a) and (23b) are neglected to be
small, and subscript | is abbreviated for convenience.

To begin with, in order to satisfy with the condition of the rigidly capped pile group: {Wei}={Wcland {Ur;}={Uc},
the eigen—vectors are set as

{Avi}={1} and {Ami}={1} (24)
By substituting Eqs. (24) into the right hand of Egs. (19), respectively, the first approximate eigen—vectors can be obtained as
{AVj}':-().v/a)z{TVj} ; Tv;=2 Tvix (25a)
k=1
{AH;}:(;{H/ﬂ)‘{TH,} ; Tu;= X Tajx (25b)
k=1

If the eigen—vectors of Egs. (25a) and (25b) coincide with the assumed eigen-vectors of Egs. (24), the solutions result in
correctness and the eigen—values become constant with no relation to the pile. However, in the case that the eigen—vectors of
Egs. (25a) and (25b) are approximate vectors, the eigen-values differ from each pile and can not be determined as constant.
Therefore by superposing each component of the first approximate eigen-vectors of Egs. (25a) and (25b), respectively, and also
of the assumed eigen—vectors of Egs. (24), the equations of the condition approximately satisfied at the pile head as a whole of
the pile group are derived:

E.AVi:(Zv/a)zzTVj:ﬂ and ZAHj:(}LH/B)AETHj:H (26)
i=1 i=1 i=1 j=1
From the above equations, the approximate eigen—values are determined as constant:

Avia =(n/% Tvs)'’* and Aw/B=(n/X Tas)'"* @27

i=1 i=1

Alternatively, the axial and lateral impedances of single piles sufficiently depend on the characteristic parameters @ L ¢ and
B L ¢. Thus the impedances of single piles can be simply expressed as follows:

Kvw=a EvAer(a Le)®" and Kuau=4B°EeIe(B L¢)™" (28)

where L ¢ is pile length. The exponents ‘mv' and 'mh' are equal to unity for the short-stiff pile behaving as rigid pile: Re(
L »)< 0.3 and Re( B L »)< 0.5, and tend to zero for the long-flexible pile behaving as infinitely long pile: Re( @ L ¢) and
Re( B L ¢) > 3. For the other pile, 0 < 'mv' and 'mh' < 1.

Since Kvi and K w1 of the first mode can be expressed as well as the impedances of single piles by Egs. (28), the axial and
lateral impedances of pile groups can be obtained from Egs. (23a) and (23b). That is

K$v=nAvErAe(AvL#)"" and I(r‘i;ﬂ:4ﬂ;{HSE‘PIP(AHLP)““1 29
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Fig. 2. Lateral impedance group factors with frequency

For the purpose of ready computaion, the exponents 'mv' and 'mh' are made use of the values determined from the real part of
the static impedances, i.c. spring constants, of single piles.
The impedance group factors are defined as the ratio of the impedances of the pile group to the individual single pile. That is

KS$vn Kv)=(Av/a)™ P =(n/% Tvy)" """ (30a)
i=1

KSa/(n Kun)=(Aa/B) ™" =(n/2 Tu;) """ (30b)
i=1

The presented simple method for the axial and lateral impedances of pile groups is justified only for regular polygon pile groups
oscillating axially, and for 1 X 2, 2X 1 and 2 X 2 pile groups oscillating laterally within the category of the above simplified
method. Additionally, the presented simple method coincides with Dobry's simple method for the short—stiff pile: i.e. exponents
mv' = 'mh' = 1. It is explained from the presented simple method that the interacrion factor adoped by Dobry et al. (1988) is
unsatisfied for the long—flexible pile: i.e. exponents 'mv' = 'mh’ = 0. This point of view for much longer and softer pile has been
also discussed by Gazetas et al. (1991) and Makris ez al. (1992).

The presented simple method is applicable to various arrangement of piles in a group and utilizable for short—stiff piles to
long-flexible piles indicated by the exponents 'mv' and 'mh'.
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Fig. 3. Axial impedance group factors with frequency

RESULTS OF IMPEDANCES AND DISCUSSIONS

For verification of the simplified method and the simple method proposed herein, comparison of the presented two methods with
the rigorous solution of Kaynia ez al. (1982) adapted from Dobry et al. (1988) is shown in Figs. 2 and 3 fora 2 X 2 and a3X3
square pile group in a homogenecous halfspace. Each pile is rigidly capped. The analytical parameters are as follows: Poisson's
ratio ¥ s = 0.4 and the hysterctic damping ratio £ = 0.05 of soil, the slenderness ratio L ¢/ I o = 30, the ratio of Young's
moduli of pile to soil E ¢/ E's = 1000, and the ratio of mass densities of soil to pile 0 s/ 0 » = 0.7, and the closest spacing of
the axis—to—axis of the pile S/ r o= 4, 10 and 20. From the exponents 'mv' = 0.99 and ‘mh' = -0.01, the pile is classified as
the short—stiff pile under the vertical vibration and as the long—flexible pile under the horizontal vibration.



The axial and lateral impedances of pile groups are expressed as follows:
K9VZK9+iGoce and K%HZK%‘*‘I'GOC% 31

The impedance group factors in these figures are presented as the ratio of the spring constants of the pile group KV and K i,
and as the ratio of the damping coefficients of the pile group C§ and C§ to the sum of the static spring constants of the
individual single pile # K% and 1 K%, respectively.

For the 2 X 2 pile group, the results of the presented simple method, which is analytically justified in this case, agree well with
those of the presented simplified method for both axial and lateral impedances. The presented simple method is effective in the
low frequency range, i.e. @ o < 0.5. It is seen that the introduced assumptions, i.e. the influences of the subgrade reactions along
the shaft and at the tip of the receiver pile and at the source pile tip on the impedances are negligibly small and the effect of the
inertia of pile can be ignored, are appropriate for the simple method. Alternatively the results of the presented two methods for
the axial and lateral impedances agree well with those of the rigorous solution, and the presented simple method is excellent as
well as the presented simplified method.

For the 3 X 3 pile group, the presented two methods for the lateral impedance are in satisfactory agreement, and the results of
the presented two methods for the lareral impedance are sufficiently accurate in comparison with those of the rigorous solution.
It is seen that the presented simple method for the lateral impedance is reasonable for the long-flexible pile, i.e. exponent 'mh'
=0. On the other hand, though the frequency, at which the difference between the presented two methods for the axial
impedance is obseved, exsists partially, the results of the presented two methods for the axial impedance almost differ from those
of the rigorous solution, and the presented two method are generally applicable. It is seen that the presented simple method for
the axial impedance is also reasonable for the short—stiff pile, i.e. exponent 'mv' = L.

CONCLUSIONS

A simple method for computing the axial and lateral impedances of pile groups has been presented in the physical and analytical
procedure as well as a simplified mehod. Although the simplified method is compelled to solve the characteristic equations of
the I th order, the simple method does not require computing the characteristic equation or the inverse matrix and is easily
executed by the simple closed—form expressions. The presented simple method is applicable to various arrengement of floating
piles in a group, and is taken account of the behaviour of the wide range from stiff and short piles to flexible and long piles in
the simple expressions with exponents. The verification of the presented simple method is performed from comparison with the
rigorous solution. Consequently the simple method is sufficiently accurate and readily useful in practical application without
much computational effort. This application to the preliminary design and so on may offer a good insight into the prediction of
responses of structures with pile foundation exposed to seismic excitation.
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