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Abstract

To solve the problem of wave attenuation in ground, the authors have presented 2 papers [1],
[2]. One is on the wave attenuation in time-domain using Fading Memory theory [1], and the
other one is on the wave attenuation in spatial domain using the attenuating neighborhood
theory [2]. Because in a real case, an earthquake wave will attenuate in time-spatial domain
in the same time during propagation, this paper is aimed to solve such problem by presenting
suitable model. Using the constitutive law, the ¢ value can be certainly obtained, and in
turn if the @ value is obtained by experiments the way to calculate the influence function
has been shown.
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Introduction

From our previous papers it is clear that the wave attenuation is divided into two kinds and has
both been solved in general, as follows. The first is that the wave attenuation in time domain,
mainly representing the viscosity of the soil ground. The other one is the the wave attenuation in
spatial domain, mainly representing the inhomogeneousity of the soil ground.

It is the fact that the real earthquake wave will attenuate in time and spatial domain in the same
time, because the soil ground really has viscousity together should be inhomogeneous. Thus the
wave attenuation problem should be studied in time-spatial domain, which needs one to present
the @) value in wavenumber-frequency domain



Following our previous papers, it is reasonable to use the fading memory theory together with
the attenuating neighborhood theory to treat such attenuation problem, where the viscousity has
been assumed to follow the constitutive law of fading memory while the inhomogeneousity has
been assumed to follow the attenuating theory.

In other words the experimental data of @ value for wave attenuation should be regarded as the
data in time-spatial domain. The relationship between our theory and the real data has been
shown, where the method to obtain the memory function and/or the influence function has been
discussed.

Derivation of Constitutive Law

The general constitutive law for viscoelastic material with fading memory can be written in the
following [1].

o= Ae + t m(t—s)ag—(s)ds (1)

J=op S
where o is stress of the soil ground, A is is the Lamé constant, ¢ is the strain, m(t) is the so-called
memory function.

In the above equation, if the ground is elastic inhomogeneous, the elastic constant and the density
should be considered as follows.

A=Ag+84, p=pot+ép (2)

the above equation is the often used one in scattering theory for earthquake wave, where

Ay =< A>, <8A>=0 (3)
po=<p>. <ép>=0

Using the above equations the motion equation can be obtained as:

0%u 0 .
Ao(—‘a-;i / t — S 83}23 -ds — 905}—2‘ = —%(6146) + 5,0& (4)

For simplicity of derivation and explanation, m(t) = 0 is assumed. Thus the motion equation
becomes

Pu 1 ,0%u 2 Ao
w——aq)(x,t)"f-c ﬁ, c —7 (5)
where P
b(z,t) = !9$(6A5) — bpil (6)
Because: ~
0)=[ ar /{ B(¢, 7)8(z — €)6(t — T)dé (7)

In general, the solution of the motion equation is.
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(8)

From the wave scattering theory, it is understood that the scattering wave decrease the primary

wave. The above solution can be written as:

u=ulz,t,z—§)

And thus it is reasonable to assume that

Ba,t) = [ bz —€)e(e,t)de
which obeys the attenuating neighborhood theory.

As conclusion of this section, the constitutive law is written as.

o= Ae+ / &, t)dE + / m(t — S)Bg(s)ds
and the wave equation becomes.
%o 8u(§ t) %u
o+ g | [ e =)z, = g

Q Value

After Fourier transform, the constitutive law in wavenumber-frequency domain is

E(k,w) = AE(k,w) + B(k)E(k,w) + iwM(w)E(k,w)

(9)

(10)

(13)

where the memory function and influence function after Fourier transform can be divided into real

and imaginary parts as follows.

B(K‘,) = BR(K/) + ’I:BI(K,),
M(w) = Mp(w) +iM(w)

Then the constitutive law can be rewritten as.

Y(k,w) = [A + Br(k) — wM,(w) +iB(x) + iwMp(w)| E(x,w)

Using the definition of the @ value, we obtained

1 Bi(x) + wMg(w)
Q - A+ b'R(I‘E) - WMI(UJ)

(14)

(15)

(16)

The simulation results to obtain the @ value from memory function and influence function are

shown in Fig.1 and Fig.2.
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Fig.3. The Imaginary Part of Influence Function Calculated from Q Value

Influence Function from () Value

In real applications, generally the ) value can be investigated from experiments. Thus to grasp
the wave propagation it is important to determine the m(t) and b(z). Because until now the
authors have not developed a method to determine a memory function together with an influence
function, using only one group of @ data.

Thus at this point we have to make some assumptions for the purpose to calculate the functions.
Because in general the viscosity of the ground can be easily obtained which determines the memory
function. In other words from the previous studies, it is understood that the wave attenuation
due to vibration is generally easily determined while the attenuation due to inhomogeneousity is
difficultly determined.

Thus the problem becomes to present a methcd to calculate the b(z) while the m(t) and Q(x,w)
are known.

The relation between the real part and the imaginary part of the influence function is as follows.

_ L 0 BI(T)

Bp(x) = /_m Rl gr (17)

also we have the following equation from last section.
Bi(k) + wMp(w) __ 1 (18)

A+ Bp(k) —uM(w)  Q(k,w)
Using the above two equations we obtained
1 = By(1) A w
B <) — / d = — —_

) Qe w) S w7 T Q) Qe ) TMel) (9

In the above equation the Q(x,w) and {M[,, Mg;} are known, and the unknowns are By(x) and
{Bri(x)}. Thus the equation to obtain the influence function is as follows.

1 2 B,’ T

Q) Bus) — - 3 0 2 = 4 b 0) - M) Qu(x, ) (20)

=1

K —



Using this equation, the imaginary part of the influence function has been calculated from the @
value of last section. The simulated results are shown in Fig.3, where is is clear that the calculated
influence function is same with the original one.

Theoretical Solution of Wave Propagation

We have the wave equation.
8u 0%u o > Ou( 5 , du
Ao~ oo =~ | ta - 05— [ mie— 9555

Because the wave equation is a linear one, the solutlon can be obtained by superposing the two
solution of the following two equations.

3
ds (21)

0%y 0u g > Ju(¢,t)
Aow - Po&_r =79 /_ b(:c f) € d¢ (22)
8u Py t Fu
Aogs o = = [t = 9)goagds (23)

The solutions to the above two equations have been shown in [1] and [2]|, which clearly gives the
following solutions for eq.(21), as follows.

1 0 e o .
u(z,t) = P /_oo T R PR /_OO cpe” Bwlz—iwt gy, (24)

Conclusion

The way to solve the problem of earthquake wave attenuation in wavenumber-frequency has been
presented and some simulation results have been shown.
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