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ABSTRACT

The optimal seismic microzonation problem is solved using an analogy to the evolution of biological
systems. With this perspective, each possible zonation is an organism which evolves, competing to preserve
its genetic patrimony. In this process the winning organisms will be those which can adapt to the
environment, perfecting generation after generation under natural selection and, therefore, converging to the
optimal zonation. In the first section of this paper, the problem of optimal seismic microzonation is stated. In
the second section a general approach using genetic algorithms philosophy and some specific techniques for
evolutionary simulation are introduced. Genetic algorithms are applied to an example case of seismic
microzonation in the third section and a general method to improve the search process is proposed. Finally,
results are discussed.
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OPTIMAL SEISMIC MICROZONATION

In Earthquake Engineering, we have to balance the material, logistic and social damages, with the cost of the
structures. Obviously, the use of lower seismic coefficients produces economic but weak buildings and the
higher the values, the stronger are the structures, and more expensive they are. To obtain the optimal seismic
coefficient, for a defined structural type, two curves need to be computed. The first one is the relation
between cost and seismic coefficient (cost curve), which is unique for a specific structure. The second one is
the relation between the expected economical losses and the actual seismic coefficient (damage curve) due to
geographical position, which is a function of the structure location. There are several methods to estimate the
optimal coefficient. One is by taking the intersection of the curves and another is getting the minimum of the
addition of these curves. When calculating the optimal seismic coefficient for a large number of points, it is
possible to obtain curves that join equal values (contour graphs). In the same way, using the cost function,
we get curves that define the cost for a single structural system type called unitary cost function (Cu).
Within this context, the seismic microzonation problem is defined as the aggregation of several
administrative areas in an specific number of zones, with the same optimal seismic coefficient, for a given
structural system type. Administrative areas are geographical regions in which the domain is discretized.
Each administrative area i with an structural system type j have a Cu; associated. This value represents the

amount of assigning an optimum seismic coefficient for a single structural system type, inside this area. The



value of this function is the maximum cost present in an administrative area since it represents the maximum
optimal coefficient. Theoretically, taking the maximum coefficient, the expected damage will be minimized.
For each area, the number of expected structures is known and is called expected frequency F, . With these

parameters it is possible to compute the cost of assigning the seismic coefficient for all the structural system
types as follows

C, =2 F; Cu (1)
J

When several administrative areas are grouped in a zone K, the maximum value of the cost function of each
defined structural system type is assigned, which again corresponds to the maximum seismic coefficient. In
this way, the zonation cost is

Zk= ZZFv MAX; (Cuy) )

ieK j

The optimal solution for the seismic microzonation problem, for an 7 zones case, is obtained by aggregating
the administrative areas such that the total cost CZ, is minimum. This is given by

Optimum Cost = MIN(CZ;) = MIN(Z (A K) 3)

K=1

In the general case, there is at least one optimal solution. However, this could have several combinations that
satisfy the minimum aggregation cost. For a discretized domain, the minimum cost is achieved by defining
as many zones as administrative areas. On the other hand, the maximum cost is when all administrative areas
are aggregated in a single zone. Determining the number of zones is another optimizing problem but is
beyond of the scope of this paper. There is not a formal mathematical solution for the latter problem. Solving
by exhaustive search is an easy programming task, however, these methods are not suitable to be applied due
to large computer processing time even when there is a reduced number of administrative areas.

BRIEF INTRODUCTION TO GENETIC ALGORITHMS
Terminology

Genetic Algorithms is an optimization process that uses the natural selection as search instrument. It assumes
a group of possible solutions or artificial organisms represented by a set of chromosomes. Chromosomes
codify the organism characteristics by means of a symbol string which is stored in the genes. The offset of
the genes inside the string is defined as Jocus. The genes values are represented by alleles taken from an
genetic code. The group of chromosomes that characterize an artificial organism is called genotype. The
information represented by means of the genotype must be decoded to obtain the morphology of the
organism. This decoded information is called phenotype. The successful level of the artificial organism is
defined by a fit function which uses the phenotype as arguments. In Figure 1 all these concepts are showed.
Evolutionary process simulation is a group of artificial organisms (population) that changes in time by
means of tree steps: selection, cross over and mutation.

Genetic Algorithms

Using natural selection as a search instrument, genetic algorithms is a set of techniques (Goldberg, 1989) to
simulate natural processes. Over this point of view, each possible solution is represent by an artificial
organism that competes to preserve its genetic patrimony. The successful level of the organisms is evaluated
by a fit function that represents the object function in the optimization problem, such that the winning



organism at the end of the simulation will be the best solution and perhaps the optimum. In the following
section we are going to discuss several algorithms.
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Fig. 1. Chromosome composition and successful level evaluation

Selection. As nature, stronger organism will have a best opportunity to reproduce. The strength of an
organism is represented by the level of fitness function or, in terms of optimization, by the object function. In
this process, the genotype of each organism is decoded to the phenotype to compute the successful level
Fa_. This value is used to estimate the probability of reproduction Pr, as follows:

y

Prs= g 4

Z Fas
=1
Using this probability the mates for reproduction (cross over) will choose.

Cross Over. In a reproduction process there is a possibility that a couple of mates transmits its genetic
patrimony. To simulate this possibility the cross over probability Pc is used. This term represents the
probability that the mates’ genes will be mixed in the new organisms. If there is not cross over, the new
organisms will be an exact copy of the parents. On the other hand, if cross over is present, the reproduction
process is simulated obtaining a random locus value and interchanging the genes using the locus as a
boundary. This process is shown in Fig 2. This procedure is repeated until a new set of m organisms is
created (new generation).
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Fig. 2. Cross over

Mutation. In each generation it is possible to have mutation. Mutation is the sudden change of the content of
a single allele that belongs to any chromosome of any organism.



To simulate this process, a mutation probability defined as Pm in a Bernoulli variable is used. For each gene
of all chromosomes in the generation the Bernoulli variable is computed. If it is true, the allele will change to
other valid value of the genetic code.

Special Techniques for an Evolutionary Simulation

Circular Cross Over. Until now it was described the cross over as the interchange of chromosomes segments.
However, some times, the continuous edges interchange can decrease the search performance. This aspect
can be solved using the circular cross over. Circular cross over assumes that genes are disposed in a ring,
such that, the start and end genes of the chromosome are neighbors. The simulation is done by generating
two random variables. The first one is the normal locus an the other is an offset. These values define the
segment of the chromosome for a normal cross over. In Fig 3, theses aspects are shown.
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Fig. 3. Circular cross over

Scaling. At the very beginning of the evolutionary simulation, strong organisms, i.e. high fitness-function
values, can conduce to a false optimum. On the other hand, when simulation achieves a high number of
iterations, organisms presents very similar fitness function values which produce lower convergence
performance. To avoid this problem the scaling method is used. There are several scaling techniques. For
this research we applied the simplest; linear scaling. This method assumes that for each generation, the
fitness function value Fa, is modified by means of

Fe.‘-=0«'Fas+,3 (5)

Coefficients a and B must be selected satisfying two conditions. The first one is that the average values
before and after of the transformation will be equal ( Fa, = Fe, ), insuring in next generation, that the number
of average organisms will be one. The second condition is fixed using the Cm parameter which represents

the number of sons of the best organism of the generation. More details may be found elsewhere (Goldberg,
1989).

Minimization of the Problem. Genetic Algorithms search solutions for the highest fit function values.
However, in this case, a minimization is required. To compute the minimum value using a maximization
technique, the system must be changed (duality). Defining Fa, as the maximum possible value of the fitness
function and Fa, as the minimized solution, the following equation represents the fit function applied for
this research

Fa,=Fals-Fa (6)



GENETIC ALGORITHMS IMPLEMENTATION TO OPTIMAL SEISMIC
MICROZONATION

Genetic Model

Genetic implementation of this problem assumes that each possible zonation corresponds to an artificial
organism with a single chromosome (haploid). The length of the chromosome is equal to the number of
administrative areas such that the locus will be equivalent to the index of each one and the gene will
represent to the area itself. In this way, the allele of each gene will define the zone in which an administrative
area would be located. In this model the decodification between genotype and phenotype is virtual, i.e.
genotype is equal to phenotype. This similitude is just for computers. Conceptually, decodification processes
change the meaning of the genotype (string of integers) to phenotype (possible microzonation). For this
paper we took a small example of 100 administrative areas disposed as follows:
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Fig. 4. Administrative areas with its associated parameters

Each cell of Fig. 4 represents an administrative area. The first two numbers are the cost function values and
the others are the expected frequency for two structural system types, respectively. In Fig. 5 the contour
graph of these cost functions are plotted. For the evolutionary simulation, parameters were defined as
follows

PARAMETER VALUE
Population 100 Organisms
Cross over probability Pc=0.75
Mutation probability Pm=0.001

Constant for the best generation son Cm=1.8
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Fig. 5. Contour graph for the cost function of each structural type

For this research, the number of zones in which the areas will be grouped is 4. Using the data mentioned, the
maximum cost to incorporate all the areas in a zone is 129,859 an the minimum 69,094 units. Finally,
making a complete analogy between genetic and seismic microzonation Table 1 is shown

Table 1. Analogy between genetic and seismic microzonation

GENETIC SEISMIC MICROZONATION
Organism Zonation
Genotype (haploid) Number of genes 100 Number of administrative areas
Gene Administrative area
Locus Administrative area index
Allele Assigned zone
Genetic code 0.1,2,3 (zones)
Phenotype Zonation Map
4 100 2
Fitness function 129859 - 1;;1 Z ,Zz FyMAX, (Cuy)

i=1
iek

Initial Population

In Genetic Algorithms, the initial population is generally a random set of chromosomes. However, when the
first generation is defined using some procedure which gives an start point to the search, the performance of
the algorithms can be dramatically improved. This paper proposes the method to define the initial
population. Analyzing the microzonation problem, it is clear that the lower number of zones leaves to the



least possible combinations. Based on the minimum number the zones, two, the initial population will be
defined.

In order to compare the random population with the initial definition, all the parameters for the evolutionary
process simulation remain constant.

IMPROVING THE GENETIC ALGORITHMS

Our method consists in generating an initial population using the combination of binary zonations that
contains the patterns or schemes of the optimal solution. Using a binary genetic code, it is possible to
compute, quick and easily, a good solution for each unitary cost function separately and for the global
problem joining the cost functions. In the example prepared, the patterns obtained are displayed in Fig 6.
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Fig. 6. Binary patterns computed using genetic algorithms

The next step is to introduce the effect of the number of zones. In this way, it is necessary to compute all the
possible combinations for each binary solution using the total genetic code, i.e. replace the black and white
cells by the combinations {0-1, 1-0, 0-2, 2-0, 3-0, 0-3, 1-2, 2-1, 1-3, 3-1, 2-3, 3-2}. With this procedure,
genotypes will be generated that in the cross over algorithm will produce new patterns which contain the
contribution of each cost function to the optimum. In the example of this paper, the number of initial
phenotypes is 36. The 64 remaining are assigned randomly. These remaining phenotypes will not compete
successfully against the binaries patterns. However, it will preserve the random element and will increase the
number of organisms of the population. Obviously, at the second generation, all the patterns will be mixed
an will be competitively appropriated for the evolutionary simulation.

RESULTS

In Fig 7, results for two simulations, using the same random seed, are presented. The curve above was
obtained assigning a complete random population. The second curve represents the initial population. Using
different random seeds similar results were obtained. The number of generations was 10,000 which would
seems excessive (one million of organisms per simulation), however, the number of possible zonations is
1x10%, approximately. On the other hand, the processing time was 12 minutes using an SUN SPARCStation
10. Even more, the asymptotic behavior of the convergence shows that practically in 1/10 of the evolutionary
process, a very good value is achieved. Comparing the curves, it is clear the effect of the initial population.
The genetic search performance is increased dramatically due to early identification of the patterns that
presents the optimal configuration. The cost of microzonation found for the simulations are 90,063 y 85,736
units for the random and predefined populations, respectively.

CONCLUSIONS

1. Genetic Algorithms offer a robust, easy and low-time process method to obtain a successful result for the
seismic microzonation problem.



2. The use of binary patterns to determine the initial population for an evolutionary simulation presents a
dramatic improve of the genetic search.

3 Applying these techniques it is possible to obtain the optimum number of zones needed to offer the best
economic, social and political solution.

GENETIC ALGORITHM PERFORMANCE
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Fig. 7. Comparison between random and predefined population
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