. » Copyright © 1996 Elsevier Science Ltd
o % Paper No. 1664. (quote when citing this article)
Eleventh World Conference on Earthquake Engineering

ISBN: 0 08 042822 3

11 WCEE

FEDEAS: NONLINEAR ANALYSIS FOR STRUCTURAL EVALUATION

F.C. FILIPPOU' and E. SPACONE?

'Department of Civil Engineering, University of California, Berkeley, CA 94720, USA

Department of Civil, Environmental and Architectural Engineering, University of Colorado,
Boulder, CO, 80309-0428, USA

ABSTRACT

The ever increasing power of desktop computers, the ever increasing complexity of the design and analysis of
new structures and the ever increasing need for the rational evaluation and strengthening of existing structures
require a versatile, sophisticated and adaptable library of structural elements for use in a general purpose
finite element analysis program. At the same time, guidelines for model selection are indispensable for the
use of nonlinear analysis is practice. This paper addresses issues of element development and element
implementation in the nonlinear dynamic analysis of structures.
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INTRODUCTION

The evaluation of the nonlinear behavior of structures depends on the development of advanced analytical
models, which describe the time and load dependent behavior of the structural members. These models
should satisfy two basic requirements: (a) they should be reliable, robust and computationally efficient, and,
(b) they should be of variable complexity depending on the degree of detail required from the analysis: while
individual critical members of the structure need to be evaluated with sophisticated finite element models, the
overall behavior of multistory buildings and multiple span freeway structures can be described with sufficient
accuracy with simpler member models. In fact, the ability to combine finite element models of critical regions
of the structure with nonlinear or even linear member models of the rest of the structure should be an
important consideration. Furthermore, the ability to refine a particular element model to the desired degree of
detail is another important consideration in the development of such models.

An appropriate platform for the development of structural member models of variable complexity is a general
purpose finite element analysis program that meets the following requirements: (a) it allows for an easy and
transparent addition of elements to the program, (b) it provides utilities for input data generation, data storage
and manipulation and output of the results, but allows the user to also easily incorporate custom-made
utilities for new elements, (c) it provides several nonlinear solution strategies for static and dynamic analysis,
but allows the user to also include custom-made solution strategies, (d) it provides utilities for, at least,
rudimentary graphical pre- and post-processing, and, () it is so lean and efficient that it can run on a variety



of platforms ranging from personal computers to workstations. Last, but most important, requirement is that
the program be capable of accommodating three-dimensional as well as two-dimensional structural models.

The proposed structural element library FEDEAS (Finite Elements for Design, Evaluation and Analysis of
Structures) is built around the finite element analysis program FEAP by Robert L. Taylor of the University of
California, Berkeley. Salient features of FEAP are documented in Zienkiewicz and Taylor (1989), while a
complete manual is in preparation.

This paper presents some salient features of the structural element library FEDEAS. The generality of FEAP
makes a distinction between two-dimensional (2D) and three-dimensional (3D) elements unnecessary. Some
of FEAP’s capabilities are discussed in the examples. The report by Filippou (1996) contains a more
comprehensive discussion.

FORMULATION OF STRUCTURAL ELEMENTS

The first release of the structural element library FEDEAS consists of a few elements and a collection of
uniaxial hysteretic material models. The proposed elements are three-dimensional, but can be used equally
well in a 2D analysis. The elements are: a linear and nonlinear truss element, a linear and nonlinear frame
element, and a nonlinear hinge element. In the final development stages is a cable element with nonlinear
geometry, a nonlinear frame element for prestressed concrete members with bonded or unbonded tendons, a
frame element with relative slip between constituent components that models bond between reinforcing steel
and concrete or partial composite action between concrete deck and steel girder.

The common characteristic of most of these elements is that they are based on the flexibility method of
analysis. In this case the element stiffness matrix is derived by inversion of the flexibility matrix, which is
formulated with the virtual force principle: the relation between internal and external work is based on force-
interpolation functions that relate the internal forces at a cross section along the element axis to the end
forces. This approach offers several advantages over commonly used stiffness-based elements: (a) the force-
interpolation functions are exact solutions of equilibrium conditions for the frame element and can, thus, be
readily established even in the presence of element loads; this is not the case with stiffness-based models,
where the displacement interpolation functions are not exact for nonprismatic and/or nonlinear elements; (b)
the strict satisfaction of equilibrium yields superior numerical robustness and accuracy in the presence of
strength loss and softening, which can be expected in the evaluation of older concrete structures with poor
detailing, but also in new steel structures with fracturing connection behavior; (c) the direct inclusion of
element loads yields a significant reduction in the number of nodes and elements of the structural model.

The incorporation of flexibility based elements in a structural analysis program that centers on the direct
stiffness method is not as straightforward as for stiffness based elements. This explains the limited number of
such elements, even though a few investigators have recognized their superiority (Zeris and Mahin 1991).
Even the few elements proposed to date have failed to give a consistent formulation of the element and its
numerical implementation in a structural analysis program. Even though the solution to this problem was first
sketched out in the paper of Ciampi and Carlesimo (1986), the study by Spacone resulted in the first
consistent formulation and clear numerical implementation of a flexibility-based frame element in a general
purpose finite element analysis program (Spacone et al. 1996a). The algorithm in the latter study proved to be
computationally efficient and numerically robust, even in the presence of strength loss and material softening.
This algorithm points out that the consistent state determination of flexibility based elements needs to be
based on residual deformations, much like the structure state determination is based on residual forces in the
well-known Newton-Raphson iteration and its variations.

The consistent theoretical framework of the study by Spacone ef al. (1996a, b and c) allows the formulation
of a class of flexibility based frame elements with either distributed or concentrated end inelastic
deformations. In either case the hysteretic behavior of the section can be described by means of a force-
deformation relation or can be derived from the hysteretic behavior of individual fibers into which the section
is subdivided. In the former case it is really not possible to describe the interaction between internal forces in



a rational way, as is the case in the latter at the expense of some complexity.

MATERIAL LIBRARY
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Figure 1-Hysteretic Stress-Strain Relation of Concrete Material Models

The material library of FEDEAS consists of uniaxial force-deformation relations that describe the hysteretic
behavior of fibers or sections of the structural elements. Several models of the same material are available,
allowing the user to select the desired level of complexity. There are, thus, three models for the hysteretic
behavior of concrete: (a) a model with no tensile strength, (b) a model with tensile strength and a linear
tensile strain softening branch, and (c) a model with tensile strength and a nonlinear tensile strain softening
branch. All three models have the same behavior in compression. Model (a) has a simple rule for loading-
unloading in compression, while models (b) and (c) follow a slightly more complex rule. Figure 1 shows a
typical stress-strain history for concrete models (a) and (b).

The material library also contains several hysteretic steel models. Figure 2 shows the characteristic hysteretic
behavior for two of these: a bilinear model with isotropic strain hardening in tension and compression and a
nonlinear steel model according to Giuffré-Menegotto-Pinto modified to include the same isotropic strain
hardening as the bilinear model.
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Figure 2-Hysteretic Stress-Strain Relation of Steel Material Models

Finally, the library includes several generic hysteretic force-deformation models that can be either used in the
modeling of individual fibers or in the modeling of the force-deformation behavior of plastic hinges and the



section force-deformation behavior of distributed inelasticity frame elements. Two examples, one from a
model with bilinear envelope and one from a model with trilinear envelope are shown in Figure 3. The model
with the trilinear envelope is shown with a negative (softening) second slope in the negative force-
deformation quadrant.

1000 . : . 1500 r
T
800
1000
600 |-
T 400 |- =
= = 500 |-
E 200 - §
o 0 - [} L]
= =
o
& 200 [~ 2
2 B s
g -
2 o I o
600 | | |
: -1000 ; . b ]
800 |- i } :
| I | ! i i
-1000 i ‘ -1500 i |
0400 -0.300 -0.200 -0.100 0000  0.100 0200 0300  0.400 0400 -0300 -0200 -0.100 0000 0100 0200 0300  0.400
Rotation {rad] Rotation [rad]

Figure 3- Generic Hysteretic Models for Fibers or Cross Sections

MODEL SELECTION IN NONLINEAR ANALYSIS

Guidelines for model selection are indispensable for the use of nonlinear analysis methods in practice. This
problem has received scant attention in the literature to date, and much remains to be done. The following
observations and questions serve as a guidepost for further investigations:

e A widely held view is that the subdivision of a structural element in several control sections and the
subdivision of each control section into fibers results in a computationally expensive model. The
following objections may be advanced against this view: (a) the comparison involves models of very
dissimilar capabilities and it is not clear whether the limitations of simpler models are important in the
assessment of structural behavior or not; (b) in the nonlinear analysis of a large structure most time is
spent in the nonlinear solution algorithm of the global equilibrium equations and not in the element state
determination.

e What is the necessary number of control sections in distributed inelasticity frame models for accurate
global and local measures of response? Many studies to date fail to address the fact that the model
selection is very much dependent on the objective of the analysis.

e What is the necessary number of fibers in a cross section discretization? This again depends on the
objective of the analysis, but also on the complexity of the material and the loading history of the
structural member.

The following examples represent a very small sample of a larger study that is under way at the University of

California, Berkeley. Even though much remains to be done before offering definite conclusions on model
selection, these examples help to outline possible answers to the questions above.

EXAMPLES

Steel Column under General Load History



The first example refers to a cantilever steel column of 30’ height with a W14x730 cross section (Fig.4). The
column is subjected to zero axial load and a general displacement history at the free end, as shown in Fig. 5a.
The column cross section is divided into fibers with a nonlinear hysteretic stress-strain law similar to that in
Fig. 2b. Figs. 5b, 5¢ and 5d show the bending moments at the base of the column for the following fiber

Figure 4- Cantilever Steel Column

discretizations: the web and each flange are divided into 3, 4 and 5 fibers
along the width and one fiber across the thickness. These results are
compared with the reference solution obtained with 20 fibers across the
width and three fibers across the thickness. The results show that even as
few as three fibers permit an adequate representation of the force-
deformation relation, even though the yield envelope is clearly
underestimated in the weak bending direction. The response in the strong
bending direction is excellent, even for three fibers. The increase of the
number of fibers to 5 yields results very close to the reference solution, even
in the weak bending direction. Thus, a 5x1 fiber discretization scheme is
quite adequate for the representation of the biaxial section response, while a
3x1 fiber discretization might still yield satisfactory results for the dynamic
load-displacement history of a multistory-structure.

The previous conclusion needs revision, if it is important to track the stress-
strain history of individual fibers, and, particularly, if damage of the
material results upon attainment of a critical strain value, as might be the

case for steel under local instability or fracture and for poorly confined concrete. In this case, a larger number
of fibers might be necessary for the accurate assessment of the ultimate member deformability.
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Figure 5- Column Response with Different Fiber Section Discretizations



18-Story Steel Frame with Fracturing Connections

The last example refers to the nonlinear static and dynamic analysis of an 18-story steel moment resisting
perimeter frame structure. Fig. 7 shows the three dimensional model of the structure. In the first phase of the
study a typical plane frame in each principal building axis was

T investigated. These studies form part of the evaluation of this
! ] ‘I’ structure which suffered widespread damage in the welded
==!' ] EI’ beam-to-column connections by fracture during the 1994
-.:i ] ?l’ Northridge earthquake. More details can be found in
=E:=: .. E” Anderson and Filippou (1996).
=§=] 1 =’? By subdividing the girder cross into fibers and assigning a
e | i s fracturing steel stress-strain relation to the fibers of the
A g . . ) -
=g=r e bottom flange it was possible to simulate realistically the
@%vgi % A7 ; . . . . .
=!iy 1 ’l’, moment-rotation behavior of the girders with fracturing
==:=' I ’/ bottom flanges, as shown in Fig. 8.
-
‘ The first step was the study of the nonlinear static load to
collapse response of the plane frames with different models

. and modeling assumptions.
Figure 7- 18-Story Steel Frame Model
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Figure 8- Moment-Rotation Response of Girder with Fracturing Connection

Fig. 9 shows the results for frame A. The effect of the rigid panel zones and the second order effects is clearly
visible. A simple moment-curvature girder hysteretic model yields virtually identical results to the more
sophisticated fiber cross section model for girders with no fracture and without the effect of distributed
gravity loads.

Figs. 10-12 show the results of the dynamic analyses of Frame B to the recorded Canoga Park and Sylmar
records. The maximum interstory drift in Fig. 10 shows that most of the earthquake damage concentrates in
floors 10 through 16 in good agreement with the observed connection damage. This damage concentration is
even more pronounced with the use of a fracturing connection model in the girders of the model of Frame B.
Such a connection model amplifies the interstory drift in the upper floors and reduces it in the lower floor of
the frame (Fig. 10). It is interesting to observe in Fig. 11 that the top story displacement response does not
increase with the fracturing connection model: the elongation of the frame period after the connections
fracture following the first inelastic excursion at 4.72 sec has little effect on the response for the Canoga Park
record. The concentration of connection fractures in floors 10 through 16 is also very clear in the
displacement distributions at the first three top displacement peaks of the response in Fig. 12.
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CONCLUSIONS

The rational evaluation and strengthening of existing structures require a versatile, sophisticated and
adaptable library of structural elements for use in a general purpose finite element analysis program. At the
same time, guidelines for model selection are indispensable for the use of nonlinear analysis is practice. The
paper illustrates with three examples, how model selection is intimately connected with the objective of the
analysis: while a relatively simple model might yield accurate global response results, local ductility estimates
and damage predictions require more refined analytical models that account for internal force interactions, the
presence of distributed gravity loads and the mechanical characteristics of the constituent materials. The
paper introduces a library of such elements that are flexibility based and offer several advantages over
commonly used stiffness based elements.
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