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ABSTRACT

In the event of a strong earthquake, blocks of a stone structure may separate or slide apart. It is difficult for
conventional analysis methods to capture the complete seismic response. Discontinuous Deformation
Analysis (DDA) is proposed to simulate the response of a stone bridge during earthquake. DDA allows
individual blocks to separate away from each other or slide along their contact area. At the same time, DDA
fulfills the equilibrium and compatibility conditions within block and between blocks. Compared to other
numerical methods with discontinuous feature, DDA provides more stable and accurate results.

The DDA method is demonstrated in this paper on the seismic analysis of the Mosca’s bridge over the Doria
Riparia in Turin which was constructed in 1827. The displacement of blocks, principle stress distribution,
block sliding and separation of Mosca’s bridge due to seismic loading are presented. A theoretical
validation example of sliding blocks is also presented. Compatible DDA results with field observation of a
slender tall masonry tower under seismic loading is discussed.

In conclusion, DDA is a promising new analysis tool with many potential applications in earthquake

engineering. This paper demonstrates its seismic analysis application on stone bridge which can benefit
programs for historical preservation and earthquake retrofit.
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INTRODUCTION

Stone and masonry are essentially geomaterials, which are for the most part nonlinear and discontinuous in
nature. Under extreme seismic loading, stone blocks may undergo large displacement and the joints between
blocks may separate or slide apart. It would be very difficult for conventional analysis methods to capture the
complete seismic response of stone bridge structures. Many of the fundamental assumptions implied by
conventional finite element method (FEM) such as compatibility and continuity can not apply to such media.
Although through significant modifications, FEM has been adapted for some discontinuous deformation
problems in geomechanics, the essential incapability of these special elements have limited their practical
applications. Another approach is the distinct element method (DEM) initiated by Cundall (1971) and based
on Newton’s second law. However, real time dynamic analysis of DEM can not be carried due to its inherent
limitation (Ma et al., 1992). New concepts and methodologies, which can realistically take these natural or
artificial discontinuous characteristics into consideration, need to be developed. The most attractive method
is the discontinuous deformation analysis (DDA) method proposed by Shi in late 80°s. In this paper, DDA
background related to the seismic model of stone structure is give to some degree. The detail description of
DDA is outside the scope of this paper and can be found in the book by Shi (1992).

BACKGROUND OF DDA AND EXAMPLES

In contrast to some discontinuous method like DEM, DDA is a displacement method formulated on the basis of
the principle of minimum total potential energy. Thus the equilibrium conditions of moments, forces and
stresses are satisfied. Using displacement as variables, it solves the equilibrium equation for a discontinuous
system in dynamic formulation which avoids the ill-conditioned stiffness matrix in static formulation due to the
separation of blocks (Chang, 1991). Kinetic damping is applied in its static solution which effectively filters out
the motions with higher modes to bring the system to a static condition. Since it is a dvnamic formulation, time
step is used and the equilibrium equation is updated then solved in each time step. Small displacements and
deformations accumulated in each time step will lead to larger displacements a nd deformations.

In DDA, the simultaneous equations of the system are derived according to the standard procedures of
discrete techniques (including subdivision, element analysis, global assembling, considerations of boundary
conditions, equation solving). The equilibrium equations for the block assemblags are physically derived
through the minimization of the total potential energy of the system. In the numerical scheme, the
simultaneous equations are solved iteratively in each time step until both constraints of no-tension and no-
penetration between blocks are satisfied. Therefore the numerical model considers both statics and
kinematics and the corresponding solution will be very close to the true solution of a discretized block
system. The DDA method allows individual blocks to separate away from each other or slide along their
contact area. When blocks are in contact, the Coulomb’s friction law is applied on the interface to simulate
frictional resistance. When this mobiliable strength of the interface between two blocks is not reached, there
is no slip between these two blocks. Otherwise, when the externally-applied driving load exceeds the friction
force, relative sliding will occur.

To obtain a complete solution, two conditions, equilibrium and compatibility, must be fulfilled. These
conditions are automatically satisfied for every individual block by minimizing the total potential energy and
using a continuous displacement function. At contact points or interfaces, the equilibrium condition is reached
by minimizing the potential energy due to contact forces. DDA implementation of compatibility condition is
imposing the no-tension and no-penetration constraint between contact blocks. It is always a simply and
effective way to model the contact mechanism using a contact spring. A contact spring is added when blocks
contact and is removed when blocks separate. However, whether contact or separate is unknown when
governing equations are assembled. Adding a spring at a separate contact will impose a tension and removing a
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spring will result a penetration without contact force. Both cases violate the fundamental physical phenomena.
It is necessary to impose the no-tension and no-penetration constraint to avoid such violation. Such constraint is
modeled as a set of inequalities. Iteration named as open-close iteration has to be carried out by adding and/or
removing springs in a trial-error manner until this constraint is met or the solution of the inequalities has been
found. The block kinematics theory has been developed in DDA to insure the effectiveness and accuracy of
setting the inequalities.

The current DDA takes the rigid body motion / displacements and deformation / stra:n components of blocks
as the independent unknowns using the first order polynomial function as follows:

u=a;+ax+ay
V=b0+blx+b2y

where (u,v) is the displacement of any point in a block. (ay, by) are unknown variables representing rigid
bodymotion and others (a,, a,, b, b,) are deformation unknowns. By separating the rigid body motion and
deformation components, DDA has the advantage to stabilize the numerical computation for an rigid body
motion dominated system such as a masonry or hard rock structure. In dynamic solution of DDA, very small
time intervals is specified, same as other dynamic methods (DEM, FEM etc.). The inertia matrices of DDA
is two orders of magnitude higher than internal stress or stiffness matrices and mainly located at the diagonal
positions in the global matrix to resist the rigid body motion. The inertia terms of the rigid body motion are
located on the diagonal line, instead of around the diagonal line in FEM, since the rigid body motion
unknowns are separated from others. Therefore, with same size of time interval, iteration in DDA should be
easier to converge than that in FEM. In addition, the block in DDA can have any convex, or concave shape
or a multi-connected polygon configuration with or without holes including complex shaped blocks used in
some stone masonry structures, since the displacement function is not depending on the boundary of the
block.

Input parameters for DDA computation can be diverted into five categories as listed in the first column in
Table 1. For stone and masonry structure, masonry block is usually represented by DDA’s element (block),
which is linear elastic and require input values for Young’s Modulus and Possion’s Ratio as well as initial
stresses. The contact at the interface is represented by contact spring in normal and shear direction. The
failure criteria is constituted by Morh-Coloumb theory. Tension strength also can be included. A block
consists of individual lines (segments) and the input parameters for geometry of a block are the coordination
of these lines. The boundary condition in DDA can be displacement and/or force controlled which impose on
the selected points in a block. The coordination of such points, and magnitude and direction of displacement
and force are needed. In addition, there are two curtail input parameters: assumed maximum displacement
ratio and time interval. Assumed maximum displacement ratio is a dimensionless quantity and used for
finding the possible contact at the current step. The detailed discussion of these two parameters is presented
by Ma et al. (1995).

Table 1. Input Parameters in DDA.

Block (Soil Mass) | Young’s Modulus, Possion’s Ratio, Density, Initial Stress

Interface Normal/Shear Contact Stiffness, Friction Angle, Cohesion and
Tension

Geometry Coordinates of Blocks

Computation Assumed Maximum Displacement Ratio, Time Step and Interval

Boundary Conditio | Coordinates of Points for Displacement or Force Controlled
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Two Sliding Blocks

Failure or loss of structural integrity of a stone bridge is often the result from the progressing sliding between
blocks at one or a number of locations under seismic loading. The dynamic analysis of a two block system was
used to verify the solution given by DDA (Figure 1.a). A sinusoidal acceleration with maximum acceleration of
0.5g and frequency of 0.25 is applied on bottom block. The friction angle between the blocks is 18 degrees. The
analytical solution is based on assumption of rigid body block. Therefore, Young’s modulus of 10 GPa and
Possion’s ratio of 0.25 were used. The excellent agreement between the theoretical and the DDA solution on
acceleration, velocity, and displacement of the top block can be seen in Figure 1.
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Figure 1. A Sliding two-block system.

Seismic Response of a Slender Tall Tower

Figure 2. shows the DDA model of a stone masonry tower. This type of tower can be found in the near East and
the Mediterranean area. The seismic survivability of these towers appears to be higher than expected. No major
damage has been reported during strong earthquake, which has attracted some researchers to study its seismic
response. DDA was used to simulate the tower under earthquake loading by applying a sinusoidal acceleration
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to the base block as shown in Figure 2. The maximum acceleration is 0.5g and frequency of the acceleration is
2.5. The dimension of tower is presented(see figure 2). The results of DDA simulation is fairly consistent with
field observation. The tower structure with the height over width ratio of 10 and about 100 layers of masonry
block apparently performs well under the applied acceleration. The bottom portion of the tower has higher
normal stresses due to the height of tower and the heavy unit weight of masonry blocks. Therefore, this portion
of tower has much greater resistant force to the seismic loading. Blocks in increasing higher position tend to
slide due to the lower normal stress and friction force. However, the sliding betw:en blocks consume the
seismic energy and less seismic force will travel to the upper portion of the tower. In the present case, only 30
degrees friction angler and no damping was assumed. It is also believed that the sliding between blocks in
reality will occur in all the directions, which will consume more seismic energy than those in the two
dimensional case. Detailed results pertaining to this case will be found in authors’ upcoming paper.
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Figure 2. Graphic outputs of slender tall tower under seismic loading.

MOSCA'’S BRIDGE UNDER EARTHQUAKE LOADING

Mosca’s bridge, constructed in 1827, spans the Doria Riparia in Turin, Italy (Figure 2). The bridge is made of
Malanaggio granite, 93 voussoirs make up the 45 m span and the intrados rise 1.5 m. The thickness varies from
2 m at the springing to 1.5 m at the crown. In DDA simulation, a single block element defines each voussoir
and stone block in the bridge. Each abutment is modeled as a large polygonal block element. In DDA
simulations, Young’s modulus and normal contact stiffness are assigned to be 4.5 GPa. The unit weight is 2.4
T/m’. 0.002 sec. is the time interval. Earthquake loading was applied as a sinusoidal acceleration of 0.5g and
frequency of 2.5 same as above two cases at both abutments. It was assumed that the lateral resistance of
abutments from the foundation are not accounted during earthquake. Therefore,abutments can freely move

lateral and are fixed in the vertical direction. Prior to applying the dynamic loading, ~he bridge was subjected
to the gravity for 0.02 sec in order to obtain the initial stress of blocks and initial contact forces. Then a
sinusoidal acceleration was applied for 0.4 sec. and bridge was also under the gravity during this period time.

Figures 4 and 5 illustrate the principle stresses distribution at the end of loading (at 0.42 sec.) with or without
damping. Since implementation of the damping of masonry block into DDA model is still not clear at this
point of time, the damping is incorporated by reduction of the velocity at every timz step. It was found that
most blocks experienced high compression stress up to 5 MPa and tension of 10 KPa in the case without
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Figure 5. Principle stress distribution with damping.



damping. The tension apparently is resulted from the deformation rebounded from the compression
deformation at very short time period. High stresses were found in a relatively large area around the center of
span. In damping case with 6% reduction however, the higher stresses are more concentrated at the center
span due to the narrow cross section at this area. Displacement of right abutment was monitored and
presented in Figure 6. It seems that the velocity reduction can be effectively used as a damping measure.
Figure 7a and 7b demonstrate the time history of seismic-induced horizontal stress of marked blocks
numbered in Figure 3. The stress propagation within the bridge block system is clearly simulated. It is
interesting to observe that the horizontal stresses of center blocks No.3 and No. 4 increasing in phase but
different magnitude, almost 2 times difference.

CLOSURE REMARKS

The discontinuous feature of stone bridge poses a great challenge for engineers to understand its mechanism,
especially during earthquake. A novel numerical method, DDA, has demonstrated its unique capability to
simulate the mechanical response under dynamic loading. Better understanding under different boundary
conditions can be generally gained based on DDA simulations in order to protect, maintain and retrofit stone
structures, which often have historical significance.

DDA simulations conducted in this study suggest that although discontinuities or joints between blocks
inherently reduce the integrate and strength of stone structure, sliding on these joints consumes the seismic
energy during earthquake. Therefore, while local failures occur due to sliding or separating, the probability of
overall structural collapse is low.

At the present time, applications of DDA in real-world problems among engineering professionals are still
limited, in part due to the lack of a user-friendly DDA program. The authors are currently developing a
Microsoft Windows version of the DDA code. This version will take advantage of the Windows feature
called Object Linking and Embedding (OLE) which provides a tool for easy preparation of input data files
and analysis of computed results through popular spreadsheet, database and CAD prcgrams.
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Figure 6. Time history of displacement of the right abutment.
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Figure 7. Time history of horizontal stress of selected blocks.



