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ABSTRACT

In this paper we present control design and analysis methods that provide desirable levels of performance
and simultaneously account for actuator and sensor reliability (or failure) for buildings under seismic
excitations. Performance is defined in terms of disturbance attenuation (H-infinity norm) from disturbances
to controlled outputs of the system. The reliability of actuators and sensors refers to the deviation of actual
control forces or actual sensor measurements from their ideal levels. Results for a six-story building are
used to demonstrate the effectiveness of the control analysis and design method presented.
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INTRODUCTION

In earthquake engineering applications, the reliability issue of control systems is of great concern. Often the
control hardware (e.g., actuator and/or sensor) is embedded in the structure and maybe hard to test and
maintain. Also, the actuators are used very infrequently and function at large output levels only during
severe earthquake episodes. As a result, during the earthquake episode, feedback signals measured by
sensors may deviate from the actual values whereas forces generated by the actuators may differ from the
designed control force levels. This form of malfunction of the control system may result in a detrimental
effect on the controlled structure. Consequently, a control design methodology that can incorporate the
actuator and sensor reliability information is highly desirable.

The framework used in the paper is deterministic and does not require statistical data. It also differs from
traditional failure detection techniques in the sense that it results in controllers that immediately perform
well in the face of sudden malfunction. Veillette et al. (1992), and references therein, have also examined
reliability of control systems for complete sensor and actuator outages. While the control techniques
presented in this paper could perform this type of analysis and design, the approach used here is meant for
systems where the actuator or sensor signals have gain deviations (or variations), particularly during the
start-up period, but are not necessarily subject to complete failure. These variations could come from power
fluctuations, non-linearities, partial actuator failure for parallel type actuation or any type of variation that
causes time varying gain changes in the sensor or actuator signals.

We modify the H-infinity approach to incorporate the reliability concerns discussed above. The analysis
method can be used to evaluate the reliable performance of actuators and sensors for a given controller. This
aids in identifying the critical hardware components (for service and maintenance schedule). Reliable
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performance implies the system maintains a given level of disturbance attenuation in the presence of the
modeled actuator and/or sensor uncertainty. The synthesis problem directly uses data on the hardware
limitations to yield the best reliable performance possible, given the reliability (or malfunction) of the
actuators and/or sensors. The analysis and state feedback synthesis problems are reduced to a finite
dimensional convex programming problem. Under some simplifying assumptions the state feedback
synthesis problem reduces to a single Linear Matrix Inequality. This greatly reduces the numerical intensity
and allows for systems with many actuators to be analyzed. While the general output feedback case is
difficult to solve, our approach attempts to recover the reliable performance of the state feedback controller.
Conditions for which this is possible are presented.

Results are presented for a six-story shear-beam-type building. The achievable disturbance attenuation level
is computed for a wide range of actuator uncertainty. Significant improvement in the disturbance
attenuation level is achieved compared a nominal H-infinity design, showing the benefit of incorporating the
uncertainties into the design process. Simulation results also are presented, showing significant reduction in
interstory drift do to an earthquake episode even in the presence of significant actuator variations.

ACTUATOR AND SENSOR RELIABILITY ANALYSIS

The basic approach for actuator and sensor reliability analysis is to include actuator and/or sensor
uncertainty when analyzing the performance of a system. Here, the actual control force and actual sensor
measurement are represented by

et (1) = [ 14 8, (O] () and ¥, g () =[1+ 8, O]y )

where u;(t) and y;(¢) are the ideal control force and ideal sensor measurement. This representation is
depicted by the block diagram in Figure 1. These uncertainties represent changes from the nominal actuator
or sensor signal due to variations mentioned above which are not necessarily fixed in time. The
corresponding state space equations are given by

x(t) = Ax(8) + Bw(®) + By[I + A, ()]u(2) )
2(8) = Cyx() + Dyyw(t) + D[ I+ A, (9)]u(®) (3)
yoy=[1+A,0]Cx0) +[1+A,0)]Dyw(e) @
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Fig. 1. Actuator and sensor reliability framework



The actuator and sensor uncertainties, 8u,(‘) and Syi(t), are real time varying, but bounded parameters. With

out loss of generality we assume the upper and lower bounds have the same magnitude. This may be
accomplished by adjusting the nominal B; and C; matrices. For future reference we shall denote the vertex
sets

Byex = {diag[8,, 8,018, ,8y,.8,00.8, |1 8, =%a,.8, =+a, ] ®)
A, ={diag[8ul,8u 8, ] 8, =2 } ©
Ay, ={diagls, 5,,....8, ]: 8, =ta,] (10)
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It is easy to see there are vertices of A,,,. For a dynamic compensator of the form

q(t) = Acq() + B, y(2) (11)
u(t) = Gq(t)

the closed loop system is given by

x A By (I+A,)C, B, x % R G

. A A

g|=| B(1+4,)C, A B(I+A,)Dy [ g ]or||g =[ ][q] (12)
Z

C
G Dyp(1+4,)C, Dy, w 2 s Du

We consider the resulting closed loop system to have reliable performance if the controlled output, z(2),
satisfies the following equation in the presence of actuator and/or sensor uncertainties, assuming zero initial
conditions:

[[ 20 dr <y* [ we) wiry dt (13)

where 7y serves as the measure of performance. Equivalently (13) can be written as [z(0)|3 < y*|w(n)|}

where we have used the standard definition of the L, norm of a signal ||z(t)||§ = I:’ Z'(H)z(t) dt. As ybecomes

small, the effects of the disturbance, w(t), on z(#) is diminished. For time-invariant systems, the notation in
(13) is interchangeable with having the infinity norm of the transfer function from w to z, Ty, be less than v;

ie. T, (s)|, <7y where the infinity norm is defined as [T, (s)], = & S[T,,(jo)] and T denotes the
maximum singular value. If (13) holds then we will say the system has achieved a disturbance attenuation
of y.

The closed loop will have reliable performance if it satisfies the strongly robust H,, performance criteria of

Zhou et al. (1995). This is true if and only if R = v ‘Dl*lDu >0 and there exists an X =X >0 such
that

* * — L 3 * *
® = XAy + AnX +(XBy + CiDy )R (XBy + CoDy, ) +CACy <Oforall AcA (14)

Here, ® <O is referred to as an Algebraic Riccati Inequality (ARI). Application of the Schur complement
formula to (14) yields

A X+XA, XB,+CD, Cj
Op =| By X+ Dy Cy -R, 0 [<0 forall AeA,,, (15)
C, 0 -1



The determination of whether there exists a matrix X = X" >0 such that (15) is satisfied is a set of Linear
Matrix Inequalities (LMI’s). Note that only the vertex set needs to be checked since A appears linearly in

0O, . Determining the feasibility of a set of LMI’s is a convex programming problem for which efficient
algorithms have been developed.

ACTUATOR RELIABILITY VIA STATE FEEDBACK

In this section we discuss the synthesis of state feedback controllers for the actuator reliability problem.
This problem can also be reduced to a convex programming problem. Consider the system

x(t) = Ax(t) + Bw(t) + BZ[I + Au(t)]u(t) (16)
2(8) = Cyx() + Dyyw(t) + Dy [+ A, (8)]u(2) (17)
y(t) = x(¢) (18)

There exists a state feedback controller such that the above closed loop system has reliable actuator
performance if and only if R, = v - Dl*lDll >0 and there exists matrices Wand ¥ =Y" >0 such that

O Qi YC+W (I+4,)Dp,
O, = o, -R, 0 <0 forall A ep,,,. 19)
QY+ D,(I+A,)W 0 -1

where
Qi =YA"+AY+W"(I+A,)B; + B,(I+ A, )W

Qi =B +YC Dy + W' (I+4,)D},Dy
The state feedback control law is given by u(t) = WY~ lx(t). The above result can be simplified greatly if
- o~ * —p2_ g 2 .2 2
Dy =0, DjyC; =0 and DyDy, = R} =diaglr2 12, ....r2 | >0 (20)

This is the case when there is no direct feedthrough term from w(z) to z(z) and the controlled output vector
consists of two variables appended into one vector, where the first is a function of the states and the second
is a weighting on the controls. This is usually the case in control system design methodologies. By
decreasing the weighting on control, we place more emphasis on the states. The algebraic Riccati inequality
of (14) becomes

d=XA+A'X + x{y‘ZBlB{‘ B+ W1+ &) B+ W (1+ A’;)]* - 1§21§;}X+ CC <0 @

where f?z =B,R; 1. Here the control law is given by u(f)=R, 'Wxx(r). Selecting the central state feedback

solution W = —ﬁ; we get

®=XA+A"X+ X[y BB - By(1- )8 |x+C[C <0 forall A, €8, 22)
This is true if and only if
XA+A'X + X['y‘zBlBl* -B(1-R)8 ]x +C]C <0 23)

where
A, = diag[oc,,l SOy e .,aum] (24)



Thus the central state feedback case reduces the number of LMIs from 2™ to only 1. In fact a solution can
be obtained by solving the algebraic Riccati equation (ARE)

XA+A"X+ X[y‘zBlBl*—éz(I-&i)é;]x+ ClC +el =0 @5)

The solution to (25) satisfies (23) so that standard ARE solvers may be used. This greatly reduces the
computational requirements for systems with many actuators for this type of analysis or design. Note that

(25) becomes the standard H-infinity ARE when Au = (. This allows the achievable disturbance attenuation
level to be computed as a function of actuator uncertainty.

OUTPUT FEEDBACK

The polytopic nature of the actuator reliability problem, makes the output feedback case difficult to solve.
The fact that uncertainty enters the B, matrix further complicates this problem. However, there are
conditions for which reliability performance of the state feedback case may be recovered. If the system

g=(A+Y7BBP)g+[B B (26)
i=Cyq+[Dy Oli Q7)

is left invertable and minimum phase then there exists an observer that can come arbitrarily close to
recovering the reliable performance of the state feedback design.

APPLICATION TO SIX-STORY SHEAR-BEAM-TYPE BUILDING

Consider the building structure shown in Fig. 2, modeled by an n-degrees-of-freedom system

Mx () + Cx(¢) + Kx(1) = B[I + A, (0)]u(t) + Gw(t) (28)

where X¥(¢) € R" is an n-vector denoting the deformation corresponding to each degree of freedom (e.g.,

interstory drift). Matrices M, K, and C are n X n mass, stiffness and damping matrices, respectively, and w(t)
is the disturbance vector representing the loading due to earthquake ground motion. The m-dimension
control vector u(t) corresponds to the actuator forces (generated via active bracing systems (ABS) or an

active mass damper (AMD) for example) and A {#) represents the actuator uncertainty as described in (2).
(4.1) can be put in the form of (19) with the following, where x(t) is the 2n state vector:

[Fo) [ o I [0 7,0 "
D=z ] _[—M_lK —M'lc]’ B“[—M“ﬁ]’ 2_[—M‘1§] @)
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Fig. 2. Model of full-scale building with active bracing system



We consider a six-story full-scale shear-beam-type building with identical floors, for which a lumped-
parameter model is used in simulations. There are two actuators, one on the first floor an and another on the
third floor, both active bracing systems. The model is similar to the one used in Schmitendorf et al. (1993a,
b, 1994). The mass of each floor, and the stiffness and damping coefficients of each story unit are;
m; = 345.6 metric ton; k; = 340,400 kN; ¢; = 2,937 kN-s/m. These values result in a first vibrational mode of
1.2 Hz, with a damping ratio of approximately 3.2%. The total building weight, which is used later for
comparison with peak actuator force, is 20,342 kN.

Using X(t) as the interstory drift and w(t) as the earthquake ground acceleration, straight forward
manipulation results in the following for (29)

(1 -1 0 0 o0 0] (1 -1 0 0 o0 0]
-1 2 -1 0 0 © -1 2 -1 0 0 0
-1p_klo-1 2-1 0 o0 -1~_C| 0 -1 2 -1 0 0
MK_,nioo—l2—10’Mc“mioo-12—1o
0 0 0 -1 2 -1 0 0 0 -1 2 -1
[0 0 0 0 -1 2] [0 0 0 0 -1 2]
(1 0] [-1]
-1 0 0
a5 1o 1 1= 0
M'B=— and M'G =
m.| 0 -2 0
(]
0 1 0
[ 0 0] | 0]
We consider a controlled output vector
H 0
2= O+ [1+A,0]u@) (30)
U

where H is an r X n matrix and R, is a 2 X2 diagonal matrix. This form satisfies the simplifying
assumptions in (20). The weighted control is included in the z-vector to allow penalizing large control input
forces. By decreasing R, we diminish the weighting on the control and place more emphasis on the states.
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Fig. 3. Achievable disturbance attenuation levels for actuator reliability
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Fig. 4. Improvement in disturbance attenuation level
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Fig. 5. Pacoima earthquake ground acceleration time history

Under strong earthquakes, one of the main objectives of control is to reduce interstory drift. This leads to
selecting H that weights all interstory drifts yielding H = [16 06] , where Is isa 6 X 6 identity matrix and

O isa 6X6 zero matrix. The control weighting matrix, R,, was chosen to be

R, = diag(2.5x10“6, 2.2x10'6). The achievable disturbance attenuation level was computed for actuator

uncertainties ranging from 0 to 90% and is shown in Figure 3. The open loop disturbance attenuation level
is 0.1475, indicating that we were able to achieve significant disturbance attenuation in the presence of

actuator variability. For comparison, the nominal H-infinity controller (Z\ = 0) was analyzed by computing

the achieved disturbance attenuation level for the same range of actuator uncertainties. Figure 4 shows the
improvement in the disturbance attenuation level by incorporating actuator uncertainties in the design
process. Significant improvement in the disturbance attenuation level is achieved at the higher range of
actuator uncertainties compared to the nominal H-infinity design.



In civil engineering structures, it is also important to reduce the peak response of the interstory drifts of the
structure during strong earthquake episodes. To evaluate this simulations were performed. The earthquake
ground motion used for the simulation study is the Pacoima earthquake scaled uniformly to a peak ground
acceleration of approximately 0.2g, see Fig. 5. Since the model is linear, the structures response to a
stronger or weaker ground motion can be obtained by a simple scaling. For, example, for a moderate
earthquake with peak ground acceleration of 0.3g, the drifts and forces in Table 1 should be increased 50%.
Due to the fact that the most intense portion of the earthquake occurred during the first 10 seconds, the
simulation results reported below concern this duration only.

Nominal time histories of the response quantities of the structure have been computed for the open-loop
system (Case 1), the nominal closed loop system (Case 2) and 4 cases of the closed loop system with
actuator variations (Cases 3-6). The design simulated corresponds to a 75% actuator uncertainty. The
actuator variations simulated were time-invariant perturbations corresponding to the four corners of the
uncertainty parameter space for a 75% actuator uncertainty. The results are given in Table 1. The
maximum drifts are typically reduced to 40-50% of the corresponding values for the open-loop case. Since
the total building weight is approximately 20,342 kN, the maximum actual control forces are less than 13%
of the total weight.

Table 1. Maximum response quantities from simulation results

Case Interstory Drift Actuator Forces Actuator
(cm) (kN) Perturbation
Floor 1 | Floor 2 | Floor 3 | Floor4 | Floor 5 | Floor 6 { Actl | Act2 Sui 8u2
1 1.06 | 0.85 0.80 | 0.64 0.47 | 0.24 n/a n/a n/a n/a
2 0.49 | 0.63 | 0.52 | 0.38 | 0.26 | 0.13 | 2,056 1,467 0 0
3 0.73 } 0.76 | 0.63 | 0.43 | 0.34 | 0.18 | 1,056 861} -0.75]|-0.75
4 0.54 | 0.65 | 0.53 | 0.32 | 0.29 | 0.19 | 2,594 684| 0.75(-0.75
5 0.64 0.67 0.55 0.57 0.29 0.15 85512,1911 -0.75 0.75
6 0.44 | 0.60 | 0.49 | 0.44 | 0.24 | 0.14 | 2,578}1,876| 0.75]| 0.75
CONCLUSIONS

In this paper we presented a method for the analysis and design of systems to achieve reliable performance.
Reliable performance implies the system maintains a given level of disturbance attenuation (H-infinity
norm) in the presence of actuator and sensor uncertainties. The analysis case reduced to solving a set of
LMIs for which efficient algorithms have been developed. The synthesis of state feedback controllers
reduced to solving a single LMI, where a solution could also be obtained by solving an algebraic Riccati
equation. This greatly reduces the numerical intensity and allows state feedback controllers to be easily
generated for systems with many actuators. Conditions for which the reliable performance of the state
feedback controller may be recovered were also presented for the output feedback case. Results were
presented for a six-story building to illustrate the effectiveness of the control analysis and design methods.
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