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ABSTRACT

In this paper the three-dimensional scattering of normal incident P waves by a hemispherical canyon in the
homogeneous elastic half-space is analyzed in the frequency domain. Then the results in time domain are
obtained by using the inverse Fourier transform. For this axisymmetric case, two sequences of point source
potentials have been obtained in this study by extending the Gregory*s method for the two-dimensional case
(Gregory, 1967, 1970). They are singular at a specified point in the canyon and satisfy the free surface
conditions at the extensive ground and radiation condition at infinity. The scattered wave that satisfies the
free surface conditions and consists of outgoing wave at infinity is formed as a sum of these fundamental
source potentials with coefficients which are determined from the traction free boundary conditions at the
canyon surface in the least square sense. The error of boundary traction can be controlled in an acceptable
level. The results in frequency domain can be compared with Mossessian and Dravinski‘s work (1989) that
has used the indirect boundary integral equation method for analysis in the frequency domain. The ground
motions generated by a normal incident P plane wave with the form of Ricker wavelet at nearby ground
surface are shown, and the three major groups of incident P wave, surface P pulse wave and Rayleigh surface
waves at the ground surface are shown in figures and the existence of the reflected Rayleigh surface wave is
pointed out.

KEYWORDS

Three-dimensional scattering, hemispherical canyon, Ricker wavelet, source potentials, surface waves.

INTRODUCTION

Local topographic and geological irregularities may cause large spatial variations of seismic ground motion.
The problems of two-dimensional irregularities for various incident waves have received many attentions. In
reality the three-dimensional model is needed. There are much more difficulties for solving three-
dimensional problem. The image method for solving incident SH wave can not be used anymore to analyze
the three-dimensional case. The P, S and Rayleigh waves are converted mutually between surface irregularity
medium and its flat ground surface. This phenomenon makes the three-dimensional scattering problem in
semi-infinite medium more complicated than the two-dimensional case. Due to the existence of surface



irregularity various kinds of surface waves will be induced. This phenomenon is very interesting and will be
discussed in this article. Bard and Bouchon (1980a, 1980b) have used the method of Aki and Larner (1970)
to solve the two-dimensional scattering problem in time domain. This method uses discrete wavenumber
representation of wave field under the so-called Rayleigh assumption which causes the Rayleigh ansatz error.
By applying the method of discrete wave number to the Green‘s function, Kawase (1988) has used the direct
boundary element method to solve two-dimentional problem in time domain and Kim and Papageorgiou
(1993) have solved the three-dimensional problem. Wong (1982) has introduced a indirect boundary element
method by putting force points on a auxiliary surface to solve the two-dimensional surface topography
scattering problem in the frequency domain. Mossessian and Dravinski (1989, 1990a) have extended this
method to treat three-dimensional problems. They have also treated this problem in time domain
(Mossessian and Dravinski, 1990b). Sanchez-Sesma ef al. (1993) have used single-layer boundary sources
formulation called indirect BEM to solve the three-dimensional problems. However, BEM needs many
source points. Another method uses a series of functions to represent the scattered waves then through the
least square method or the moment method to match the boundary condition required. Sanchez-Sesma (1983)
has used the spherical wave functions of full field as the basis functions of scattered wave seties to solve the
diffraction problem of three-dimensional surface irregularity in frequency domain. Kawano ef al. (1994)
have used that method in time domain. The major disadvantage of that method is that their basis functions
can not simulate the Rayleigh surface wave. Their basis functions are not complete . If the Rayleigh surface
wave were not included in the scattered waves, the response in the high frequency range will cause large
error.

Gregory (1967, 1970) has solved a problem of wave propagation in a two-dimensional half-space containing
a circular cylindrical cavity. He has introduced two sequences of line source potentials that are singular along
the axis of the cylinder, satisfy the free surface condition at the flat ground surface and represent the feature
of outgoing wave at infinity (the radiation condition). Any solution of the governing equations (wave
equations in frequency domain), which satisfies the free surface conditions and consists of outgoing waves at
infinity, is expandable as a sum of these fundamental source potentials. The coefficients of source potentials
can be determined from the boundary conditions at the cylindrical surface only. His approach provides a
direct way to solve the wave problem in the semi-infinite medium. For three-dimensional problem we have
adopted the same approach in frequency domain (Yeh and Yeh, 1994a). In this paper we use two sequences
of point source potentials to solve the diffraction problem in time domain. This method provides a well
behavior solution for numerical approach.

FORMULATIONS OF THE POINT SOURCE POTENTIALS

In the absence of body force, the equation of motion (Pao and Mow, 1971) for a linear isotropic elastic body
18

(A+ )VV-u+ 4Via = pi, (1)
where ] and g are known as the Lame’s constants.

In this paper we consider the axisymmetric problem. In cylindrical coordinates (p,¢,z) all functions are
independent of ¢. The displacement vector u can be decomposed to two scalar potential function,

u=Vp+VxVx(ye). 2)

The equation of motion (1) can be replaced by two scalar wave equations,

Vip=p, e =(A+2w)/ p. 3)

and



Viy=y,  c=plp 4)

where ¢, and c, are the wave speed of P wave and S wave, respectively.

From the Fourier transform

F(x.0) = ;1; E:F(x,t)e"“’dt,

F(x,t) = f:ﬁ(x,a))e"’“da),.

&)

we can transfer the time domain problems to frequency domain. In the frequency domain (3) and (4) can be
reduced to

Vp+aip=0, a=wlc, (6)

Viy+px=0, p=alc, (7

where ¢ and g are the wave number of P wave and S wave, respectively.

We now construct two sequences of point source potentials for @ and y sources. Each point source potential
forms a displacement field that has one singular point in z>0 and satisfies the traction free boundary
condition at z = 0 surface and radiation condition at z — +0.

For point source potential, consider a point source at z=2z,>0,p=0,

oh = [ S7@e gy, )

§l1+| .an+3 .
: —_ for n=10,2,4,6....
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o

sgn(z, —z)-&"a™, forn=1357,...

where J, is the zero order first kind Bessel function and v, = \/? —a’ . The condition Re v, >0 and
Imv, <0 will guarantee the radiation condition satisfied. For each source potential. a pair of potentials @/
and j are required to satisfy the following conditions:

(a) ¢" —@° and ! are regular functions in z >0, and satisfy the reduced wave equations (6),

(b) the scattered wave formed by @" and ! satisfies the traction free conditions at z = 0 plane,
and

(c) the pair @ and 7/ represent outgoing waves as z —> 4.
To achieve these three conditions, we observe the source potential near the z =0 plane,

i = [ Famare e, (o, (10)
where

§n+|
5 n=024,...
F(&a)=4 v, " an

&, n=135,...



Let

pr-0h = [ ADe e Sy (e, (12)

it = [ Be e I Eoe, (13)

where v, = J& - B, Re v, >0, @” and y” satisfy the conditions (a) and (c). Solving for the condition
(b), we get (Lamb, 1904)

(14)

252_ 2 2+4 2
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A& = RO
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B(§)=———————V"(R§(§) p )-F(é;a)-a"*’, (15)

where R(&) =4E%v, V= (2£% - £*)?, and the root of  R(&) = 0 is the Rayleigh wave number ¢, .

For ¥ point source potential, we consider a sequence of point source potentials at the point z=z,,p =0,

= [ 7@ (Gp)de, (16)

n+l n+d4
gra for n=02,4.6,...
SY(H = Vv, (17)

sgn(z, —z)-&"a™* forn=1357,...

Follow the same procedure for @ source potentials we have a pair of potentials @' and . .

b, = [ e e a (g0t (8)

iy -0 = [ D&e e Iy (Go)de. (19)

where

4,8 - )

-F(&p)-a™", 20
R(E) (&P)-a (20)
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FREQUENCY-DOMAIN RESPONSE OF A HEMISPHERICAL CANYON

The geometry of the problem is illustrated in Fig.1. The flat ground surface z=0 and canyon surface are
traction free. The shape of the canyon is hemispherical surface with radius «. The tremor of the ground is
due to a normal incident P plane wave.



Fig. 1. Hemispherical canyon

Conveniently the total wave field can be separated into three parts that are incident wave u', reflected wave
u’ and scattered wave u'. In the absence of the canyon, the reflected wave is caused by the incident wave
imparting on the flat ground surface. The free field response,

ul+r — ul + ul , (22)
satisfies the traction free condition at surface z = 0. The free field response of normal incident P plane wave
is

u," =a -(e"”" +e'” ),

(23)

Because of the existence of canyon, the scattered waves are induced. However, the total wave field must
satisfy the traction free conditions at canyon surface and the flat ground as well. Thus the scattered wave u’
must satisfy the traction free condition at z =0, and the radiation condition as z — +o0.

Considering the nature of the scattered wave, its corresponding potentials @ and Y can be formed by two

source potential sequences (@7, 71) and (@,.7,).

o= 3 (400 +B.3). (24)
n=0
and
y=3(4,77+B.7)) (25)
n=0

In numerical approach the infinite series in (24) and (25) must be truncated at n= N —1. The 2N unknown
coefficients (4,,B,) are determined by applying the traction free condition at canyon surface. At the canyon

surface we have

O-:n + o”n:r = 07
(26)

K3 14r
o, +o, =0



According Gaussian quadrature rule we choose 2N points at canyon surface, then (26) gives 4N equations
for determining 2N unknowns (4,,B,) in least squarec sense. The number of N depends on the
nondimensional frequency 7 = wa/(aC,). For the class of examples considered in this paper, N is between

10 to 20. Our results are vary close to the results of Mossessian and Dravinski (1989) and Yeh and Yeh
(1994b).

TIME-DOMAIN RESPONSE OF A HEMISPHERICAL CANYON

After we have the results of the frequency domain solutions, we can get the time domain solutions from the
inverse Fourier transform. We consider the shape of a normal incident P plane wave is a Ricker wavelet
defined as (Ricker, 1977)

u,(z,0) = (2b* = e ™, @27

where b=7(t—1t,)/t.and ¢, =(z, —z)/C,, 3 is a reference position, f, is the characteristic period. The
nondimensional time 7 is defined as ¢-C, /a. The dominate frequency 77, of Ricker wavelet is at 2/7, . The
calculated frequency 7 ranges from 0 to 7/7, . In the example, 7, is set to be 1.55 and Poisson ratio is set
to be 1/3. The calculated frequencies 7 are30 in total, ranging from 0.15 to 4.5. Figures 2 and 3 show the
vertical and radial displacements of a canyon, respectively. The incident P wave and refracted surface P pulse
which is the sPs (Lapwood, 1949) wave along the surface, Rayleigh surface wave with different phase
velocity are easy identified in these Figures. In Fig. 4 the vertical and radial displacements relative to time at
position x =8a are shown. From this figure we can see the phase difference between vertical and radial
displacements for sPs wave and Rayleigh wave.
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Fig. 2. The vertical displacements of canyon Fig. 3. The radial displacements of canyon



displacement
e

v bernn perrdba e by

T v T T T v T Ty 1
] 5.0 80 70 80 9.0 100 110 120

time

»

Fig. 4. The phase difference between vertical and radial displacements

CONCLUDING REMARKS

Time-domain response of a hemispherical canyon subject to normal incident P wave with a Ricker wavelet
shape is studied. To calculate the response in wave field, a new set of basis functions of series solution is
developed. The basis functions based on point source potentials will not lose the contribution of Rayleigh
surface wave which is proved in the time-domain response. The accuracy of the proposed method was
successfully tested against published results in the low frequency range. From the results we also believe the
method can be used in a wide range of frequency.

Although the results shown here are only for normal incident P plane wave, the other cases for various
incident waves can be studied by this approach without difficulty. To understand the diffracted waves
generated from canyon, the case of normal incident P plane wave is enough and clear. '
For the general three-dimensional problem three sequences of point source potentials and one plane source
potential are needed. The more general cases can be analyzed by this method and will be present in the
sequential papers.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support granted by the National Science Council, R.O.C.
(NSC 084-2711-3-319-001).

REFERENCE

Aki, K. and Larner, K. L. (1970). Surface motion of a layered medium having an irregular
interface due to incident plane SH waves. J. Geophys. Res. 75: 1921-1941.

Bard, P. Y. and Bouchon, M. (1980a). Seismic response of sediment-filled valleys, Part 1,
The case of incident SH waves. Bull. Seism. Soc. Am. 70(4): 1263-1286.

Bard, P. Y. and Bouchon, M. (1980b). Seismic response of sediment-filled valleys, Part 2,
The case of incident P and SV waves. Bull. Seism. Soc. Am. 70(5): 1921-1941.

Gregory, R.D. (1967). An expansion theorem applicable to problems of wave propagation in
an elastic half-space containing a cavity. Proc. Comb. Phil. Soc. 63: 1341-1367.

Gregory, R.D. (1970). The propagation of waves in an elastic half-space containing a cavity.
Proc. Comb. Phil. Soc. 67: 689-709.



Kawano, M., Matsuda, S., Toyoda K. and Yamada, J. (1994). Scismic Response of three-
dimensional alluvial deposit with irregularities for incident wave motion from a point
source. Bull. Seism. Soc. Am. 84(6): 1801-1814.

Kawase, H. (1988). Time-domain response of a semi-circular canyon for incident SV, P, and
Rayleigh waves calculated by the discrete wavenumber boundary clement method. Bull.
Seism. Soc. Am. 78(6): 1415-1437.

Kim, J. and Papageorgiou, A. S. (1993). Discrete wave-number boundary-element method for
3-D scattering problems. J. Eng. Mechanics 119(3):603-624.

Lamb, H. (1904). On the propagation of tremors over the surface of an elastic solid. Phil.
Trans. A203: 1-42.

Lapwood, E.R. (1949). The disturbance due to a line source in a semi-infinite elastic medium.
Philos. Trans. Roy. Soc. (London). A242: 63-100.

Mossessian, T. K. and Dravinski, M. (1989). Scattering of elastic waves by three-
dimensional surface topographies. Wave motion 11: 579-592.

Mossessian, T. K. and Dravinski, M. (1990a). Amplification of elastic waves by a three
dimensional valley. Part 1: steady state response. Earthquake Engineering and Structural
Dynamics 19: 667-680.

Mossessian, T. K. and Dravinski, M. (1990b). Amplification of elastic waves by a three
dimensional valley. Part 2: transient response. Earthquake Engineering and Structural
Dynamics 19: 681-691.

Pao, Y.H. and Mow C.C. (1971). Diffraction of elastic waves and dynamic stress
concentrations. A Rand Corporation Rescarch Study.

Ricker, N. H. (1977). Transient Waves in Visco-elastic Media. Elsevier. Amsterdam.

Sanchez-Sesma, F.J. (1983). Diffraction of elastic waves by three-dimensional surface
irregularities. Bull. Seism. Soc. Am. 73(6): 1621-1636.

Sanchez-Sesma, F.J., Ramos-Martinez, J. and Campillo, M. (1993). An indirect boundary
element method applied to simulate the seismic response of alluvial valleys for incident P,
S and Rayleigh waves. Earthquake Engineering and Structural Dynamics 22: 279-295.

Wong, H.L. (1982). Effect of surface topography on the diffraction of P, SV, and Rayleigh
waves. Bull. Seism. Soc. Am. 72(4): 1167-1183.

Yeh, Y.-K. and Yeh, C.-S. (1994a). On the predominant period of a hemispherical canyon.
Proc. 10th European Conf. on Earthquake Engineering, Vienna, Austria.

Yeh, Y.-K. and Yeh, C.-S. (1994b). Earthquake basin topography effect 3D model research.
Report NSC84-2621-P-319-003-B, National Science Council, Taipei, Taiwan, R.0.C..



