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ABSTRACT

The paper summarizes the basic approaches and the results obtained by the group of researchers listed
above, regarding the active control of the structures. Optimal design of linear active control algorithms,
unknown and stochastic forcing functions, delayed and non-delayed systems, SDOF, MDOF and tolerance
of the results are some of the problems studied; see Baratta et al., 1992 thro.1995, for details.
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INTRODUCTION

The problem to keep into admissible limits the entity of the response of a MDOF structure subject to
seismic action can be approached by the application of active control techniques, based on the application
of contrast forces able to limit the effects of dynamic shaking on the structure strength. When a control
device is to be designed, a basic task is the choice of the algorithm, and the calibration of the relevant
parameters, able to yeld optimal performance of the system.

In the classical optimal control notations (Soong, 1988), the control optimization is usually based on the
minimization of a quadratic performance index

=L OVaD +q (ORq(0)] i M

with z(t) the state vector of the system, q(t) control force vector, V and R weighting matrices that balance
the quality of the control system and the exercise freight.

If the loading history is not known a-priori, it is not possible to solve the motion equation in the classic
form; so, for the definition of the control algorithm it is possible to refer to the “norm” (Baratta et al.,
1993, 1994, 1995' s 1995° ) solution. It is assumed that the forcing function is known only through an
“intensity” parameter, namely its “energy” in the quadratic sense.

The controlled response function is expressed through the “norm” of the response parameters,
independently of the details concerning the seismic accelerogram. The response operator norm is



minimized by the condition that the maximal entity of control force cannot exceed a fraction of the
maximal stress which could be experienced by uncontrolled stucture.

Recent works have verified the possibility to apply this procedure both to S.D.OF. (Baratta et al., 1993)
systems and to M.D.O.F. (Baratta et al., 1994, 1995' | 1995” ), remaining into the field of the linear control
algorithm (closed loop) for linear structures.

Moreover one of the major problems in the design of the control algorithm is due to the delay in the actlon

of the servomechanism, which may lead to undesired effects (Baratta 1992, Baratta et al 1994 1995’
1995 ) especially considering that the external force is not known a-priori in detail. In this case the
solution in norm has been pursued by a step rational procedure either for the SDOF or for the MDOF
systems.

The possibility to compensate the effect of delay has been investigated too, assuming the forcing function,
that is being realized symultaneously to the control force process, to be a sample from a random function,
with unknown - or partially unknown - characters, that can be recognized in real time while the motion is
going on.

Detailed reference to literature can be found in the Baratta et al papers (1992 through 1995).

NORM SOLUTIONS FOR LINEAR STRUCTURES

For structures with only one degree of freedom effects (Baratta et al. 1993), the equation of controlled
motion is

(1) +2 y@ytit) + g u(t) = f(£)+q(t) )
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q(t) being the control force, f(t) the external force and ©, = \/0)(2) +o" » G = M‘Oﬂ;—m respectively
®

c

the pulsation and the damping of the controlled system. Assuming the response operator norm of the
structure L(®,) (valid both for o =w, and {=¢, and for ® =@, and &=¢) and the norm operator
H(w,,£,) that produces the control force, the problem is developed minimizing the quantity

L(0,8) =S e /|f| = 05 L(®, .5, ) = min
(4)
with Q(0,8) = @ /If] = H(®,.,£.) < Q,

being Q, the limit on control force and S, the maximum stress in the structure.

The control strategy can be identified in the search of the optimal values, [in the sense of the problem (4)]
,and © , for assigned value of damping and pulsation of the structure.

To this aim, the adopted procedure is a random-walk technique for the search of constrained minimum
(4). The procedure of the optimization is applied for different value of £ ,and @, and with the control
force Q,=BL(0,0), L(0,0) being the value of maximal stress S axo / "f || on the uncontrolled structure.

The results obtained through the numerical experiments are tested with simulation procedures and they
proved the efficiency of control procedure. In fact, assuming o, =30 sec” and ;= 5%, with $=0,3, the
response is reduced at 25% of uncontrolled structure, and with $=0,5, about 12%.

Analogously, for MDOF systems (Baratta et al. 1994), the possibility of minimizing the response operator
norm is approached under the condition that the entity of forcing function doesn’t exceed a fraction of the

maximal stress which could be experienced by the structure without control. From the equation of the
motion

Mii(¢) + Ca(r) + Ku(r) = f(¢) + q(¢) (5)



where q(¢)=-Cu(t)-K'u(z) is the vector of control force; the matrices C’ and K’ depend on the
location of the actuators and of the sensors and on the value attributed to the elements (linear control
algorithm coefficients) and they may be noth simmetric. So, the equation of controlled motion in the
standard form, can be diagonalized by decomposing the damping matrix in a diagonal component and in a
“remains” matrix with the principal diagonal made by zero elements.

Putting s, as the maximum instantaneous value of the modulus of the stress vector, the inequality can

be written
Iq'max < Bsmaxo (6)

where |q|max, the maximum instantaneous value of the modulus of the control force, depends on the

control function G (K',C'") and from the forcing energy norm ||¢||T , @(t) being the instantaneous
modulus of forcing vector f(t)

1] ee < Go(K',C)- |0, (7)

and s, , maximum instantaneous value of modulus of stress vector in the controlled structure, depends

on maximum shear in the controlled structure S; and from the forcing norm "¢||7

S max < Sc(K" C') Ilq’"T (8)
Putting S; =S, (0,0), the problem is reduced to the following optimization

rlgiCpSC(K’,C') sub G (K,C)< BS, 9)

For example, for a structure with three floors, putting actuators and sensors on every floor and considering
the action of a ground shaking modeled by a shot noise motion, the results for B=0.1 are that the
maximum control force experienced by the frame turns out be equal to s,,/7.0 and the maximum
controlled stress is equal to s,,.,/1.8. So the controlled response is reduced about 55% of uncontrolled
structure.

Later studies have proved that the results can be improved effects (Baratta et al 1995' , 1995° ).

Using the technique of modal control, both the possibility of checking all the modes to realize an “optimal
control”, and the possibility of checking only one, however realizing an efficient control but with a
smaller expense in terms of energy, can be verified. As generally known, the “independent modal space
control” (IMSC) is based upon the possibility of transforming the equation of the motion with n degrees of
freedom of MDOF system, into » uncoupled equations in modal coordinates of the type, so that the
control force can be introduced directly in the modal equation, as modal control force

¢ +20,0.0,+ 0 ¢, = w (D) +g(1) (10)

with g,(t) = —~(2¢{,@,4, + @’ ¢,). This process results in a very simple procedure, allowing also, in case it
is requred, to apply the control force to a reduced number of degrees of freedom.

In other words, the coefficients ¢, and | are deduced from optimal control of eq. (4) (Baratta et al.
1993), in correspondence of the i-th mode damping and pulsation parametres £, and @, .

So, the optimally controlled equation of the i-th mode can be written as follows

$.+2008,.+ 0’9 +2¢" @', §,+ 07 @, = w(t) (11)

and, assembling again into the matrix form, one gets



O+ D+ Ad + D'+ A'd, = w(1) (12)

in which D’and A’are diagonal and positive defined matrices that contain the control coefficients in
modal terms. Now it is possible to go back to nodal displacement components u and to mechanical
characters of control system, building up motion of control coefficients in the u-space K, and C..

The theory presented in the above is applied to three floor frame (Norm Optimized Modal Control),
stressed from shot-noise-type ground shaking and with control devices applied at every floor.

The results are tested for values of the control force equal to 1/20 S, (8=0.05) and the controlled response
is reduced about 45% of uncontrolled response.

This procedure also allows to controll only a reduced number of degree of freedom and so to save the
economical and the energetical engagement (pseudo-optimized control).

In that case, the principle of the design of the control coefficients can be identified in the requirement that
the answer of the partial control system should be as closer as possible to the one obtained with the Norm
Optimized Modal Control.

So, to obtain with the partial control an effect as close as possible to the one obtained with the “optimal”
control, one aims at

lac,

= min; ”AKC

= min (13)

where AC, and AK, are matrices obtained from the difference of total and partial control matrices.

The performance can be applied to provide only a small number of actuators despite sensors remain
placed on every degree of freedom.

For example, putting only one actuator in a three floor structure on the 2™ floor, for a value of the
maximum allowed control force equal to 1/4 S, ($=0.25), the controlled response is reduced to about 23%
of the uncontrolled maximum stress at the first floor.

Based on the assumption that the original structure exhibits uncoupled modes, the design procedure of the
nodal control parameters through the in-norm optimization of the response of the single modes, appears
efficient enough, so that one obtains a significant reduction of the structural strenght with a rather poor
control action.

If a smaller number of d.o.f. are controlled, the effectiveness is obviously reduced, but it still exhibits
considerable advantages because a significant attenuation of the structural response is obtained without
requiring hard performances by the control device.

NORM SOLUTION FOR A DELAYED LINEAR CONTROL.
NUMERICAL PROCEDURE

In the next paragraphs one summarizes the results obtained for a MDOF linear system described above
when the delay of the response of servomechanism deputed to the active control is taken into account; in
this case the control force g(t) in the eq. (5) becomes

q(t)=C;s(t-7)+Ks(t—7) (14)

where C, and K, are the matrices of control coefficients, not necessarily neither positive definite nor
symmetric as for C and K.

Not-Dimensional Time Equation

Assuming that o} is the minimum eigenvalue of the standard stiffness matrix S obtained as M K M,
it is possible to introduce the non-dimensional time parameter 3= w, ¢ (9= @, 7), whence the variable in

eq (5) becomes y(8) = M u(S/a)O) and the non dimensional delayed equation, with the position



(*) =d(*)/ds | is

y'(9) +2Ey(9)+Qy($) +( &) =0(9)
y0) =y, ; y(0)=y, (15)

where
E=M"CM™ 2w, ; Q=M"KM™"*/ &,
A=M"K,M"?/a} ; H=M"C, M2, (16)
d9)=q(9/m,)=2Hy(9 -3) +Ay(9-3), @(9)=M" f(9 @,) [}

A Numerical procedure

Let consider the 2n dimensional state vector
(9)= [v(9) ] [y ] [v1 Ty -
i L J Ly(t9 )] LyJ %o LyE)J (17
with &; an element of a discrete sequence of time instants spaced by A9 on the duration of the external

disturbance ¢ ($) Assuming for the solution a step rationale form, and using compact matrix notation,
with z;= z(t;), one obtains

z,,=Pz+Qz _+Wp.-AS (18)
where @; = @( 0;) and denoted with 1 the n-dimensional unit matrix
[ A9 2 ] [-AAS? 1 ,
pll, 43(1,-EA3)| . o_| ~HAS? | ;w{l" A9/2}AS a9)
L 0Ad L-2EAS | | -AAs 2HAS | L,
The solution of (18) is searched in the form A
z,=V,z,+ ) R, -A9 (20)
j=I

where R, are matrices [2n x n] that are built up sequentially by a recursive procedure such that all
matrices R, are known for m <.
From eq. (20) one derives the vector z ; and substituting in eq. (18) and rearranging one gets

i+l

Z,=Viag +ZRi+l.j jj—l ‘A8 (21)
J=1
with
V=P ; R, =W ; R;=0 fori<j ; R, = R, (22)
{PVi for i<k R PR, Jor j>i—k 3
MOPV,+QV,,  for ik YT PR, +QR, . for j<i-k (23)
Equation (20) can be rearranged in a closed form, assuming that z, = 0
z=R ¢ A9 (24)
where R, is a matrix [Zn X ni], expressed in the form
R =[R,R,R, .. R] (25)

and @, is the external force vector [ni X 1] , 1 denoting the step-time considered.



Norm Bounds for the control parameters

In order to control the system one can take under observation some of the response parameters by
evaluating their norm or the norm of some linear combination of them.
Consider that a m-vector g(:% ), assembling m response parameters to be observed, is expressed, using a

suitable matrix G [m x 2n], by any linear transform of z
g(3)=Gz(9) (26)

a numerical procedure to evaluate the norm of g(9) is exposed
Remembering the eq. (24)

g=2(3)=GR$, A% =D, ¢, A9 (27)
therefore the norm of g; is searched in the form

g=gg=0/D;D.9, a5 (28)
after some algebra one can obtain

s=le s o], Yoo @)

where the calculation of the values 1}, proceeds alongside with the iteration yielding the sequence of
matrices &j. In fact, firstly one obtains that

tG = Tr [D o DGI] (30

and then it is possible to establish a rule to calculate r; ,,, after r; is known.
Remembering the eq. (22), one can write

ré,m = Tr[D&M D G,i+l ] =Tr[RiT+1,1 GTGRm,l ] + Tr[ DgiDGi = TF[R.T+1,1 GTGRiH,l ] 'H'éi (31)

From the above equation, one observes that 12, is a monotone increasing function of the index i. So, one
can write

Zmax S Ton “‘P"‘/X\g 32)

Optimal design of the control algorithm

If one wants, for instance, to control the displacement vector y(8 ), one can define the matrix G in the
form

G,=[1, : 0] (33)
So, from eq. (32 ), one gets

Ymaex S Ton "(I)"\/Zg (34)

The main problem in control design is to verify that the control action has the maximum efficiency, while
saving the control force ¢(-3 ) under a prefixed threshold; therefore one needs to evaluate the norm of the
current control force too.

From eq. (26), one can write

«(8)=G,z2(9-9) with G, =[2H : A] (35)



so the norm bound on the control force ¢(9 ) is given by

Coue S Ton ||(p||\/5 (36)

The problem of the optimal design can be set as follows
Find y,,.. = minimum sub c_,. <c, 37

Putting C, =c, / ("(p" \/AS) and remembering the procedure exposed in the previous paragraphs the
problem can be expressed in the form

Find 15, minimum sub 15y <C, (38)
Since one recognizes that, apart from A3
ox=Y(HLA|EQ) ; 1,,=C(HA|EQ) (39)
finally the problem is set as follows
Find (H,A): Y, =min Y(HA |EQ)

(40)
Sub dH,A|EQ) <C,

whence one concludes that the value of y_, , expressed in eq.(34) depends on the choice of the control
parameters H and A, governing the control force in eq. (15).

NUMERICAL APPLICATION: THE SDOF SYSTEM

The procedure described above has been applied to a SDOF structure under the action of a seismic ground
shaking and for a number of values assigned to the expected delay with a more or less strict upper bound
on the control force, choosen as percentage of the maximum shear force Sg ..« of the uncontrolled
structure. The results have proved that the presence of the delay is very critical for the efficiency of linear
control algorithms

Table 1 Table 2
9 | Mmin Clynin Yo Y min Mmin Clmin Yo Y min
3 -0.246 -0.139 3.243 1.373 -0.098 -0.076 3.243 1.6064
9 -0.073 -0.075 3.243 2.172 -0.073 -0.075 3.243 2,172
15 -0.03 -0.059 3.243 2.560 -0.03 -0.059 3.243 2.560
30 0.002 0.037 3.243 2.985 0.002 0.037 3.243 2.985
€0 < So.max Co < 0.1 Sp max.

Table I and II report the optimal values of 1 and a, found for different values of the non-dimensional
delay (=3, 9=9, 8=15, §=30) and the relevant values of the norm of the uncontrolled response Y,
(0,0|¢) and the minimum norm of the response of the controlled structure Y ., (1, al&), respectively for
Co < Spmax. and for Cy < 0.1 S ¢ - The given structure is assumed to have a damping coefficient = 0.03.
The results have been verified through the application of simulation processes. The seismic action has

been simulated by assuming the forcing function equal to a Gaussian shot-noise: with § varying between
0 and 150.

The simulations effects (Baratta et al. 1995’ ) showed encouraging attenuation of the response only for
values of the delay in the range 0 < 8 < 10; values of delay above this threshold need algorithms more
sophisticated than the linear one. Moreover statistic analysis carried on 100 samples of the forcing
function, for any value of the delay 9, showed that the mean of the uncontrolled response, Ly, is
obviously unaffectzd by §, while the mean Jy of the optimally delayed-controlled response is significantly



influenced by the delay 9; it is lower for small delays and tends to p, with increasing delay.

On the other side, the effect of control turns out to be rather stable as the delay increases: the absolute
value of tolerance in the estimation of delay seems to increase with increasing the nominal delay; this
effect is easily explained by the reduction in the control force allowed in the optimal situation.
Nevertheless, one should note that the relative tolerance (Baratta et al. 1995° ) remains larger for smaller
delay.

As mentioned in the introduction stochastic prediction of the forcing function has been investigated too,
and its general characters have been outlined (Baratta et al. 1995, 19954). As a temporary conclusion, it
can be assessed that the performance of this approach depends mainly on the correlation structure of the
forcing function. Generally speaking, it is expected that the stochastic prediction can successfully work
only if the correlation length of the forcing function is larger (better, much larger) than the delay time 7.
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