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ABSTRACT

An examination of the effect of ground motion characteristics on the effectiveness of Tuned Mass Dampers
(TMD) is made using a nonstationary random vibration formulation. A Kanai-Tajimi spectral density and a
modulating function fixed by a single parameter are used to define the input. Effectiveness of the TMD is
judged by inspecting the ratio of maximum expected displacement with and without the presence of the
damper. The results indicate that the optimum TMD damping is insensitive to the bandwidth and depends
on the duration to period ratio only for relatively low values of this quotient (where the optimum decreases
with decreasing duration). The results suggest that TMD units may be able to provide notable reductions
in spectral ordinates for periods near the dominant motion period when the excitation is narrow band and
of long duration. The practical significance of these reductions, however, is lessened by the fact that small
inelastic excursions also lead to sharp reductions in response for these conditions.
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INTRODUCTION

A tuned mass damper (TMD) is typically a single-degree-of-freedom oscillator added to a structure with the
objective of reducing the response to dynamic excitations. The effectiveness of TMDs as means to reduce
vibrations from harmonic loads has been well established since the early work of Den Hartog (1940).
Crandall and Mark (1963) studied the effectiveness of TMD in reducing the response of single-degree-of-
freedom systems subjected to white base accelerations. These authors characterized effectiveness using the
ratio of the stationary variance with and without the damper and found that significant reductions could be
obtained using small mass ratios. The results obtained by Crandall and Mark suggested that TMD units may
prove effective in reducing response to earthquakes.

Kaynia, Veneziano and Biggs (1980) used a large ensemble of real earthquake motions to asses the effect
of TMDs in the maximum elastic response of a number systems. These authors noted that predictions derived
with a stationary random vibration formulation consistently overestimated the effectiveness of the damper.



The fundamental causes of the discrepancy were identified as: (1) failure of the response to reach (or
approach) stationarity in many of the simulations and (2) the unconservative nature of the ratio of standard
deviations (with and without the TMD) as a measure of the ratio of peak response values. In view of the
findings by Kaynia et.al. (1980), the examination of the damper presented in this paper is made using a
nonstationary formulation. In particular, the formulation presented treats the input as a uniformly modulated
random process having a Kanai-Tajimi spectral density function (Kanai 1961) and calculates the response
using the evolutionary spectral analysis introduced by Priestley (1965). The maximum response variance is
then used to compute the expected value of the maximum response by introducing a peak factors which is
computed from the evolution of the first and second moments of the spectral density (Vanmarcke 1977).

Central to the issue of TMD effectiveness is the matter of optimum parameters. Formulas for the parameters
that minimize certain objective functions have been derived for various inputs, (Warburton, 1982, Tsai and
Lin 1993). One of the objectives of the current study is to examine how the optimum TMD damping for
earthquake excitation is affected by the parameters that characterize the motion. Of some interest also is to
examine how values from a recent suggestion for selecting the damping in the TMD (Villaverde and
Kaoyama 1993) compare to results from the RV formulation. The overall objective of the research reported
in this paper was to identify the conditions (if any) where consideration of a TMD as a seismic vibration
absorber may be warranted.

The paper begins with a brief review of the theory of evolutionary spectra. The implemented formulation
is verified by comparing its predictions with results obtained using time history analysis for an ensemble
of 10 artificially generated motions. Numerical results for reductions in peak response as a function of the
parameters that govern the input are presented next. The paper concludes with a preliminary examination of
the effect of inelastic action in the main structure.

SYSTEM CONSIDERED

Figure 1 illustrates a planar idealization of an n story building with a TMD provided at the roof level.
Assuming that a reasonable solution can be obtained using a single shape (¢) to describe the displacements
of the building, the system can be reduced to one with 2-DOF. Normalizing the assumed shape to 1 at the
roof, the equations of motion can be shown to be;
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Fig.1 Planar model of multistory building with TMD

where y is the roof displacement and 6 is the displacement of the TMD relative to the roof. Inspection of
(1) shows that the reduced system is characterized by 6 independent parameters, namely: the mass ratio p
= m,/ m, (where m, = ¢'m ¢ ), the participation factor I' = ¢' m r/ m,_, the frequency and damping ratio
of the main structure (associated with the shape ¢) o, and &,, the damping ratio of the TMD &, , and the
frequency ratio, f = @,/ ®, . The frequency and damping of the main structure ®, and &, are typically



assumed to be those associated with the first mode (i.e ¢ is taken as the first mode shape). As initially noted
by Kaynia et.al. (1980), the participation factor can be dropped from the set of characterizing parameters
because the ratio of responses with and without the TMD , for realistic values of u and I, is nearly
independent of T". This contention is evident by noting that since I >>p the right hand side of (1) (and thus
the linear response) is nearly proportional to I'. In the numerical analyses presented here the participation
factor has been taken equal to 1.

COMPUTATION OF RESPONSE : RANDOM VIBRATION FORMULATION

The theory of evolutionary spectra introduced by Priestley (1965) with a peak factor formulation from
Vanmarcke (1977) are used to obtain the expected maximum response of the system with and without the
damper. In particular, the maximum expected response is computed as

Ymex =T(g) O m) (2)
where G, is the maximum standard deviation and 1, is the peak factor at probability level p. The time
dependent variance is obtained as,

o() = [SD(t,w) do (3)
0

where the evolutionary spectral density SD(t,0) (Howell and Lin, 1971) is given by
SD(t,0) = |M(t,0) |2 G(w) (4)

In (4) G(®) is the one sided spectral density of the input and M(t,0) is obtained from

M(t,0) = [h(z) clt-c) e *o" d (5)
0

where h(t) is the unit impulse response for the DOF of interest and c(t) is a modulating function that
accounts for the build-up and decay of the ground motion intensity. As is well known, the foregoing
formulation preserves the assumption of stationarity in the frequency content of the input. At the heart of the
preceding approach is the calculation of the unit impulse response function h(t). While this function can be
built from modal contributions, in this study h(t) is obtained as the Fourier transformation of the frequency
response function for the DOF of interest without decoupling the equations. Although a derivation is omitted
for brevity, it can be easily shown that the impulse response function for displacement at DOF "j" in any
viscously damped linear system subjected to a dynamic load with constant spacial distribution is given by

h(e) = [ Niw) e** do (6)

where

N(iw) =A*B(io)g (7)

In (7) A is a column vector of zeros with a unit value at the jth location, g is the load distribution vector and
B(io) is the complex matrix given by [ (K-0> M) + @ Ci] "' (where M, K and C are the system's mass
stiffness and damping matrices). In the case of (1) g'= [(I' + p) u] and, to compute the roof response, A'
= [1 0]. While the expressions used to compute r, are not reviewed, the approach is as described by



Vanmarcke (1977), adjusted to account for the modulation in the input motion.
Validation

Figure 2 shows a plot of the reductions in peak response as a function of the damping ratio in the TMD.
The parameters that define the spectral density of the input (taken to be of the Kanai-Tajimi form) and the
time modulation utilized are shown in the figure. Average results from time history analyses for an ensemble
of ten artificial motions compatible with the utilized density and modulation are shown as large dots. As
expected, the RV formulation provides a virtually perfect match to the average of the simulations.
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Fig2. Comparison between RV predictions and simulations (T = T, = 1sec
g, =002, u=0.05 E=0.05 modulation as shown)

TMD EFFECTIVENESS
Examination of TMD effectiveness is made for the case where the spectral density of the input is of the

form proposed by Kanai and Tajimi (1961) multiplied by a frequency modulation (filter) that brings the
spectra to zero at zero frequency. Egs. (8) through (10) define the general form

G(w) = D{(0) G(w) (8)
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The time modulation used to describe the buildup and duration of the strong motion is as shown in Fig.2.
To make the modulation a function of a single parameter the rise time tr is taken as tm/4. For the system
in (1), and the ground motion characterization used, the ratio of peak response with anid without the damper,
y/y, , is a function of 9 dimensionless parameters, namely: y/y,=f[n,t,& ,& &, u,f, I, p),
where 1 is defined in (10), T is the normalized duration (tm/T) and p is the probability at which the peak
factor calculation is made. Taking p = 0.5, f = 1 and recalling that the participation factor I" can be taken
as 1 the number of parameters is reduced to 6.

Optimum TMD Damping
In the following, attention is focus on how the motion characteristics affect the optimum TMD damping.




Fig.3 illustrates some typical results for the variation of the reduction as a function of the damper damping
and Fig.4 shows plots of the optimum damping as a function of the normalized duration for wide and narrow
motion bandwidth. The fundamental observation from these results is that the optimum damper is insensitive
to the ground motion bandwidth and is affected by duration only when this parameter is relatively small. A
consequence of the preceding observations is the fact that a close approximation to the optimum TMD
damping, except for short durations, is given by

_ p{4-p) ' (11)
2 \je(z-u)(w)

which holds for stationary response to white base acceleration (Nigam and Narayanan, 1994). It is worth
noting that although (11) has been derived on the assumption of an undamped primary structure, numerical
results indicate that this result is virtually independent of damping in the main system (Warburton 1982).
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Fig.3  Reductions in response vs. damping in the TMD (§, = 0.02, p = 0.05).
0.12— 0.12
g e o T
S g
S 008} 5 0.08 |
a o 3
E - E i
E 004} S § 0.04 | :
'g ) .g
3 - 8
0 4 il . 0
1 10 T 100

Fig.4. Optimum TMD damping vs normalized duration (£, = 0.02, n = 1).

A plot of the damping in the complex modes of the 2-DOF system in (1) as a function of the TMD damping
(for the structural parameters of Fig.2) is illustrated in Fig.5. As can be seen, the damping in one of the
modes increases indefinitely as the TMD damping increases while the other reaches a maximum and begins
to decrease after a certain threshold - this behavior is typical. It has been recently suggested that optimum
TMD performance may be associated with the point where the mode whose damping decreases reaches a
maximum (Villaverde and Kaoyama, 1993). This contention, however, appears questionable since it does
not explicitly contemplate the dependance of the maximum response on the modal correlation nor the
connection between this correlation and the modal damping ratios. As can be seen, the value identified in
Fig.5 is not in agreement with the results depicted in Figs.2-4. In any case, it is appropriate to note that the
response reductions are actually rather insensitive to increases in the TMD above the optimum value so that



higher damping can be used to control the motion of the damper itself w1thout comprom1smg the
effectiveness significantly.
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Fig. 5. Damping in complex modes as a function of &, for f =1 and u = 0.05.

Some clarifications in connection with the results presented are appropriate. First, the value of &, = 0.04
used to represent the narrow band condition was selected by fitting (9) to the square of the Fourier
amplitudes for the strong portion of the SCT record from the 1985 Mexico City Earthquake. This bandwidth
is, therefore, probably near the low end of the realistic range. Second, in the narrow band case the results
shown for reduction and optimum damping at T/T, = 1 are actually based on consideration of a band
around this point. In particular, the optimum damping and the reductions are obtained by minimizing the
response in the range (0.9 < T/T, < L1.1). If only the ordinate at T/T, = 1 were contemplated, the
reductions in response would be larger and the optimum damping smaller than the values listed. Given that
the best information one can expect to have in practice is that the T/T, ratio is near one, minimization of
the spectral ordinate around resonance is reasonable.

Expected Reductions at Optimum Damping

Figure 6 illustrates results for the ratio y/y, as a function of the normalized duration for various conditions.
Some basic observations can be made from an inspection of this figure. First, it is worth noting that the
reductions afforded by the damper in the region around resonance for narrow band motions can be
substantial. For example, for a normalized duration T = 16 and a mass ratio of 0.05 the spectral maximum
is reduced approximately 40 % when the damping ratio of the main structure is 0.02 and 30% when it is
0.05. For a mass ratio of 0.025 these reductions decrease to 30 and 20% respectively. The reductions in
response for wide band spectra are smaller than the values that apply near resonance in narrow band
motions and, as expected, are much less sensitive to the T/T, ratio. For T = 16 and &, = 0.4, for example,
the average reductions for a mass ratio of 0.05 are 18% if the damping is 5% and 27% for a structure with
2% damping.

Spectra with _and without Damper for Actual Records

In the previous discussion the effectiveness of the damper has been assessed from the predictions of RV
theory at specific values of the T/T, ratio. Elastic pseudo-acceleration spectra for the El Centro (1940) and
SCT (1985) records computed with and without an added TMD are depicted in Fig.7. As can be seen, the
effectiveness of the TMD in the case of the narrow band SCT motion is quite significant. It is interesting
to note that the reductions for SCT are somewhat larger than what can be expected on the basis of a Kanai-
Tajimi Spectral Density and a reasonable duration. An examination showed that the increased effectiveness
derives from the bi-modal shape of the square of the Fourier coefficients for the strong portion of this record.



Fig.6 Response reductions vs normalized duration for various conditions (n = 1).
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Fig.7  Effect of TMD on elastic response spectra (£, = 0.05, p = 0.05)

Exploratory Examination of Inelastic Response

Reductions in response realized by a TMD are not of the order needed to ensure elastic response under
severe ground excitation. It is of interest, therefore, to examine the behavior of the response when the
motion is strong enough to induce inelastic behavior in the main structure. Clearly, the conditions of
most interest are those for which the TMD is effective in reducing the elastic response. Consider a
structure with T= 2 sec and 5% damping subjected to the SCT record. A plot of the response ductility vs
the yield base shear coefficient is shown in Fig.8 for the cases with and without a TMD with p = 0.05.
As can be seen, the gains derived from the TMD do not carry very far into the inelastic range. This
result can be readily rationalized by recognizing that the quasi-resonance which allows the TMD to
become effective in the elastic range is lost even with modest inelastic behavior.
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Fig. 8 Effect of inelastic behavior on TMD effectiveness (u = 0.05, £, = 0.05, §, = 0.12, T = 2 sec).
CONCLUSIONS

The results in this study suggest that the TMD damping at which maximum response reductions are attained
is not sensitive to the frequency content of the input motion. This contention is based on the assumption that
the damper is designed with the objective of reducing the maximum spectral ordinate in a narrow period band
centered around the nominal T/T, ratio. It is found that the optimum TMD damping increases with
normalized duration until it stabilizes near the value that minimizes the stationary response variance for white
noise base acceleration. It is noted that the results obtained do not lend support to a recent contention that
the optimum TMD damping is that for which the damping in one of the complex modes of the system
reaches a maximum. It is found however, in agreement with several previous examinations, that sensitivity
of the reductions in response to the TMD damping is typically small. Control of the motion of the damper
itself by increasing damping is thus possible without compromising effectiveness significantly. The magnitude
of expected reductions from implementation of TMD units appear sufficient to be of practical interest in the
case of narrow band motions with long duration. For example, reductions of around 35 to 40% in the
maximum spectral ordinate appear feasible with mass ratios of 0.05 for motions resembling the SCT Mexico
City record. The practical significance of these reductions, however, is lessened by the fact that small
inelastic excursions also lead to sharp reductions in response when quasi-resonant conditions are encountered.
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