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ABSTRACT

The equivalent-linearization technique for hysteretic systems under random excitation is applied to study the
influence of the level of non-linearity on the response of several systems. The cases considered include both
stationary and nonstationary narrow band excitations. The results are presented in the form of response
spectra. The accuracy is calibrated with the results of Monte Carlo simulation. The calibration is made in
terms of the values of the standard deviation of displacement in mass-spring-damper systems. Some
recommendations are made about the use of equivalent linearization in single degree of freedom systems.
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INTRODUCTION

The solution of the equations of motion for non-linear structures subjected to random vibrations is a difficult
problem. Several techniques have been developed for calculating the statistical response of nonlinear
systems. The purpose of this paper is to calibrate the equivalent linearization technique. Previous studies, i.c.
Park (1992) have show that the efficiency and accuracy of the method is about 20% in practical applications.
However, Beaman (1980) reports near to 100% for some non-linear systems.

This paper deals only with the influence of the level of non-linearity on the response. Both stationary and
nonstationary excitation are considered. The results are presented in the form of spectra and the accuracy of
these results is calibrated with the results of Monte Carlo simulation. The calibration is made in terms of the
standard deviation of displacement of mass-spring-damper systems. Some recommendations are made about
the use of Equivalent Linearization in single degree of freedom systems.

FORMULATION OF THE METHOD

For the purpose of illustration, consider the stochastic differential equation of a single degree of freedom



system (SDOF) with non-linear behavior
gX) =1 (1)

where X (t) = [x(t),%(6),#(t)]’, x(¢) is the displacement response, %(¢) the velocity and (f) the acceleration.
g(X(?)) is a non-linear function of the vector X(?) and f{%) is the excitation. X(?) and f{t) are modeled as
stochastic process. The Equivalent Linearization Approach (ELA) consists in replacing eq. (1) by the
following equivalent form

m, X(t) + ¢, X(t) + k, x(t) = f (1) @

where m,,, c, y k, are time-dependent if the statistical properties of f{?) are time-dependent. The error € is the
difference between the first members of egs. (1) and (2). The next stage is to minimize the square value of
that error € with respect to the parameters m,, c, y k,. This process will yield to a set of equations involving
the average values of several functions of X(?). For the evaluation of these expected values, it is necessary to
know the probability functions associated to the process X(?). In general, X(?) is assumed as a Gaussian
process. Under this assumption we can formulate a system of equations for m,, ¢, and k,.

MODELING AND LINEARIZATION OF HYSTERETIC RESTORING FORCES

Suppose a nonlinear SDOF system with hysteretic behavior, governed by the following equation

mi(t) + Q(x,x,1) = f(2) 3)

where Q(%,x,t) is a non-linear function that represents the restoring force. For a nearly elasto-plastic system
that force can be modeled by

O(x,x,t) =cx+o,kx+(1-a,)kz 4
2=G(%,2) 4
Here, c is the linear damping coefficient, & the initial or pre-yielding stiffness, o, the ratio of post-yielding to
pre-yielding stiffness, z the hysteretic component with units of displacement and G(x,z) a first-order
differential equation that models the hysteresis loops. Some authors have proposed different expressions for
G(x,z) for bilinear systems and for systems for which the transition between the elastic and the inelastic
ranges is smooth. In this work we used the model proposed by Bouc (1967) and Wen (1980) which is
capable of representing several forms of the hysteretic cycles. This model is expressed by the following first
order differential equation

t=a, %-a,lilzld* —a, x4 &)

Here, a3, 04, 05 y 0 are parameters that control the amplitude of the hysteresis loop, their shape and the
smoothness of the transition from the elastic to the inelastic range.

Equation (5) can be linearized in the form: Z = Cx + Hz. In particular, when ¥ and z are assumed to be
jointly Gaussian with zero mean, the minimization of the error equation gives place to expressions for C and
K (Atalik and Utku, 1976). Wen (1980) have obtained some expressions for C and K. These are used in this
study.



BASE EXCITATION MODELS

In this paper two classes of filtered white noise processes are considered: stationary and nonstationary.

Stationary Filtered White Noise.

The systems studied here are excited by a process with similar characteristics to the component E-W of the
motion recorded at the parking lot of the Ministry of Communications and Transportation in Mexico City
during the September 1985 earthquake (SC7-85). This motion is a narrow band process with characteristic of
the soft soil of Mexico City. From its Fourier spectrum, the following values were found for the Clough-
Penzien filter parameter s (Clough and Penzien, 1975): &, =0.025, ®,=3.14 rad/s, &; =0.045, ©~2.48 rad/s
and S;=31/(4n) cm %,

It is necessary to add two second order differential equations to the system of equations, in order to take into
account the Clough-Penzien filter.

Nonstationary Filtered White Noise.

In order to obtain an even more representative process for strong ground motions, the nonstationary character
of actual accelerograms are considered through the following scheme:

A@t) = c(t) B(t)

defined as an oscillatory stochastic process (Bolotin,1960). c(?) is a slowly varying deterministic function of
the time ¢, which modulates the variance of A(%); B(#) is a real-valued zero mean stationary process in the
wide-sense with power spectral density Sp(w), and A(?) is a nonstationary process with power spectral
density Sy(w)=c (t) Sp(®). In this paper, B(%) represents a white noise process (n(t)). The following value of
¢ (1) was used here (Grigoriu et al, 1988)
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METHODOLOGY
The differential equations mentioned before can be expressed as

d
Gy _LY+F
dt *

where Y=[x, x;, x,, 2, ¥, ¥y, yg]T s V=%, ¥¢=X, , y,=%, and F=[0,0,0,0,0,0, c(t)n(t)]T. L is the structural
matrix. By using the classical random vibration theory the following differential equation is obtained

d
Iy =LZ, 42,040

where Z,=E[ YY J. All the elements of Q are null except ,, which is equal to 2nc’ (1)G,, and G, is the two
sided power spectral density of the white noise process (G,=2 S, ). For the stationary case ( dZy /dt=0)

Bartels and Stewart (1972) algorithm was used. The nonstationary case was solved by using the DGEAR
subroutine of the /MSL library.



MONTE CARLO SIMULATION METHOD

In order to calibrate the ELA, the results of several SDOF systems are compared. These correspond to this
technique and to the Monte Carlo method. In this paper 10 accelerograms are used, based on the SCT-85
record (Grigoriu ef al., 1988). All the accelerograms were scaled so that they have the same Arias intensity.
The step-by-step response was obtained by integrating the equations of motion, where the excitation is a
simulated motion. Also for the simulation analysis the DGEAR subroutine was used.

SYSTEMS STUDIED

Sixty SDOF systems with vibration periods T between 0./ s and 6.0 s are analyzed. Their hysteretic behavior
is determined by the following parameters a;= K; o,=£=0.035, a;=1.0 and o,=o5. The latter depends on the
yield force F). Figure 1 shows the variation of the mean value of F, for different periods T and ductility
demands p. These forces and ductility demands correspond to systems with elastoplastic behavior (a4 too

large).
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Fig. 1. Average of yield forces for the systems studied

The influence of the a5 value on the maximum displacement was evaluated. The results are shown in Fig. 2.
This presents results of systems with 7=2.1 s, with two different yield forces, F,,=1.534 Ton and F,~0.164
Ton, associated to p=1 and 4, respectively. In this case the SCT-85 record was used. From Fig. 2 it can be
seen that the value of o has a higher influence in the response of systems with small ductility demands than
in those with high ductility demands. In what follows as=1.0 is adopted.

120

T=21s
100 | [

[o:]
o

Maximum displacement
(cm)
[0)]
o

H
o

- XX TH =R XX KX R XX X=X X X X —X —X X

N
o

0 20 40 60 80 100
O

’ —o—Fy;=1.534 Ton _yx__ Fy,=0.164 Ton l

Fig. 2. Influence of a; in the maximum displacement



PERFORMANCE EVALUATION

Accuracy

In this section it is analyzed the influence of nonstationarity on the peak standard deviation (PSD) of systems
with different vibration periods and ductility demands. Such influence is show in Fig. 3. The results
associated to the stationary motions are higher than those to the non-stationarity assumption, as expected.
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Fig. 3. Influence of the stationarity on the peak standard deviation (PSD) of displacement

The ratio A= PSD stionary / PSD nonstationary 1S presented in Fig. 4. The influence of the stationarity is higher for
vibration periods smaller than 0.8 s. For periods longer than this, the influence is negligible. From Fig. 4 itis
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also seen that the higher the ductility demand value, the higher the differences between nonstationary and
stationary results.

Figures 5, 6 and 7 show the PSD for three different types of analysis and different p values. These
correspond to stationary, nonstationary and Monte Carlo simulation analysis. The three of them have very
similar shapes. The peak factor » was obtained by dividing the results of Fig. 7 by those of Fig. 5. Results of
the peak factors are shown in Fig. 8, for different ductilities. The calculated peak factors range mainly
between 1.5 and 2.5.
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Histories of the standard deviation of the displacement 6, were obtained by using two different types of
analysis: nonstationary and Monte Carlo simulation. Two systems with the following properties were
analyzed: 1) 7=2.1 s and p=1 (Fig. 9), and 2) 7=3.5 s and p=4 (Fig. 10). These systems correspond to the
maximum displacement obtained for each ductility demand (see Fig. 7). The histories show that the
responses are approximately similar for both types of analysis, except in the interval between 25 and 50 s.
The reason for this discrepancy could be an unfortunate selection of the modulating function used by
Grigoriu ef al, 1988, or the small number of simulated motions used in this study. The former explanation
seems more likely.
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Fig. 9. System with 7=2.1s and p=1 Fig. 10. System with 7=3.5s and p=4
Operative Aspects

The ELA is an attractive tool. It can be programmed very easily in a P.C., and it needs smaller computer
processing time than Monte Carlo simulation. The following computer times would be consumed in a
PC/486/66 Mhz if the total duration of the accelerograms (160 s) were used and if 60 points were necessary
to define the spectra shown in Figs. 5, 6 and 7.

Table 1. Computing time

Analysis Stationary Nonstationary Monte Carlo
Computing time 34 minutes 60 hours 118 hours

In this paper, the following considerations were made:

Stationary analysis. The iterations necessary to calculate £, with the Bartels and Stewart (1972) algorithm
were controlled by means of the following expressions (Casciati and Faravelli,1985)

ct=ct-c*Hip+c*!
Hk =(HAk _Hk—l)/ B +Hk—1

where k is the iteration number and A is the actual value of C and H corresponding to the k-th iteration.
Casciati and Faravelli (1985) use p=10. In this paper B is taken as 3. The tolerance for the algorithm was
1x10™"° and the absolute error allowed in matrixes Zyk and Zyk+1 was 1x10™°. The number of iterations was
about 100 and 150. In some cases 500 iterations were necessary to obtain convergence.

Nonstationary analysis. In the step-by-step solution an initial tolerance of 1x10™'? and an iteration time step
of 1x10” was used. In order to decrease the computing time shown in Table 1, the duration of the excitation
was assumed as 80 s instead of 160 s. Thus the real computing time consumed in this study was 30 hours
instead of 60 hours mentioned in Table 1.

Monte Carlo analysis. An initial tolerance of 1x10” and an iteration time step of 1x10” were assumed.
Only 18 systems were used instead of 60, and the duration of the excitation was assumed as 30s instead of
160 s. That duration (30 s) corresponds to the portion associated to the 85% of the total energy of the motion.
The real computing time consumed in this study was 7 hours instead of 118 hours mentioned in Table 1.

For larger values of a4 some numerical problems arose. These are being studied by the authors.



CONCLUSIONS

The accuracy of the Equivalent Linearization Approach was evaluated on the basis of the spectra of peak
standard deviations of displacements of hysteretic single of degree freedom systems with ductility demands
of p=1,2,3 and 4, excited with a narrow band process. The following conclusions were obtained.

When Wen’s model is applied to hysteretic systems having low ductility demands, the value of o has to be
carefully chosen. His influence on the dynamic response of the systems could be important.

For the cases analyzed, a stationary assumption for analyzing long period systems resulted very convenient.
For these systems, the differences between stationary and nonstationary results were negligible.

The history of the standard deviation is very sensitive to the shape of the modulation function. Therefore, it
is important to choose a realistic modulation function.

For engineering purposes, the Equivalent Linearization is a very efficient and accurate technique for
analyzing SDOF hysteretic systems subjected to narrow band process. This method can be useful for
estimating expected design spectra.
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