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ABSTRACT

The computational aspects of simulating the moment-curvature and force-displacement behavior of
reinforced concrete columns subjected to cyclic biaxial bending and axial load are examined. Starting from
first principles the basic equations of biaxial behavior are derived. Advanced constitutive models for normal
and high strength concrete, and for the cyclic and low cycle fatigue behavior of reinforcing and prestressing
steel bars, are integrated in a Fiber-Element procedure for the simulation of the cyclic and fatigue behavior of
columns subjected to biaxial loading. This approach allows the damage assessment of columns when
subjected to earthquake type loading in all directions.

Two different implementations of the Fiber-Element modeling procedure are presented. The first
implementation uses a five-node rectangular element using a quadratic interpolation function. The second
implementation uses a five-node circular-trapezoidal element more appropriate for circular columns. The use
of quadratic interpolation functions in both elements improves convergence and thus fewer elements are
needed in the discretization process. When compared with actual experimental data, the agreement between
the model and the experiment is remarkable. Thus the applicability of the program both as a computational
experiment simulator and as a damage assessment tool is justified.
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INTRODUCTION

The complex nature of the cyclic biaxial behavior of columns makes difficult the interpretation of test results.
This is due to the interaction between orthogonal bending deformations and axial load, in addition to the
moment-curvature relationship. The number of biaxial experiments in the technical literature is very limited,
this may be due to both the relative complexity of the test and the limited usefulness of the results. A
Fiber-Element analysis program may be useful as a pre-processor, to simulate an experiment before hand. If
the program proves to be accurate it may in some cases replace the lack of experiment by providing a
simulated experiment. The program may also be used as a post-processor, to assess the fatigue damage in a
column for a given biaxial deformation history.



It is the purpose of this investigation to lay the foundation for the implementation of a comprehensive
analytical tool that may be used to simulate experiments and to evaluate the damage in columns subjected to
earthquake type biaxial loading.

CONSTITUTIVE MODELS

The ability of a Fiber-Element implementation to accurately simulate the actual behavior of a reinforced
concrete member depends on the adequacy of the constitutive models on which it is based. Advanced
constitutive models has been developed by Chang and Mander (1994a) and were used in this investigation to
implement a biaxial Fiber-Element analysis program.

Steel Constitutive Model

The constitutive steel model developed is capable of simulating the cyclic and fatigue behavior of both
reinforcing and prestressing steels. The degradation characteristic of steel was identified and modeled. The
model is also suitable for the assessment of random fatigue damage. Strain rate effects are also taken into
account. This permits the accurate simulation of steels normally used in columns.
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in which f; = steel stress, &; = steel strain, E; = elastic Young modulus, f," = yield stress, €}, = strain
hardening strain, E,, = strain hardening tangent modulus, &/, = stress at ultimate stress, f,; = ultimate
(maximum) stress and €},, = relocated origin abscissa, as shown in Fig. 1a. The positive sign superindex is to
denote the positive (tension) direction. A similar equation is necessary to describe the envelope curve in the
opposite direction. A complete description of the cyclic properties of the constitutive model implemented is
given by Chang and Mander (1994a).

The model uses a relocatable envelope curve base on the equation:
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Concrete Constitutive Model

The constitutive concrete model implemented is capable of simulating the cyclic behavior of both normal and
high strength concrete that may be confined or unconfined. Gradual crack closure, dynamic effects and
tension cyclic behavior is also simulated. The model uses an envelope curve based on the following equation
proposed by Tsai (Chang and Mander, 1994a).
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Fig. 1. Envelope Curves used in the Steel and Concrete Constitutive Models

and, 7 is a parameter to control the descending branch of the curve, as shown in Fig. 1b. This parameter was

found to be dependent of the concrete strength and given by the equation:
/
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in which f, = concrete stress, €, = concrete strain, f; = concrete strength, &, = strain at the point of
maximum stress capacity, E. = initial tangent modulus. A complete description of the concrete model is
given by Chang and Mander (1994a).

MOMENT-CURVATURE ANALYSIS FOR BIAXIAL BENDING

From first principles, the longitudinal strain at any point on a cross-section is given by:
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where € = strain at any coordinate (x, y), €, = strain at the plastic centroid, (x,, y,) = coordinate of the
plastic centroid respect to an arbitrary origin, ¢, ¢, = curvature in the x and y direction respectively. The
curvature sign is taken positive if it produces a positive displacement in the perpendicular direction. The
equations in this section are given in terms of the plastic centroid so that the moments in the presence of axial
load are conventionally defined.

The axial load on a column in terms of stresses is expressed by the equation:
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where 4, = gross area, f. = the stress in the concrete provided by a suitable constitutive model, f; = stress

in the steel computed through an appropriate constitutive model, 4; = steel area, and #b = number of bars in
the column cross-section. The moments are computed by the following expressions:
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The integrals in these equations may be computed as a summation if the cross-section is subdivided into a
series of segments (elements). In this investigation two different elements are analyzed. The first element is
appropriate for sections composed of rectangular subsections (rectangular, L-shape, C-shape, I-shape and
hollow box cross-sections), while the second element is adequate for circular columns.

Rectangular Concrete Element Fiber Model Implementation

The equations used in the rectangular concrete element fiber model implementation were derived using a
quadratic interpolation concrete stress function. The interpolation concrete stress function in terms of local
axis has the form:

fe=A+BN+CE+DnE+EN? +FE? (12)
In this equation 1 and £ represent the local axis in the x and y direction respectively, as illustrated in Fig. 2a.

The element has five nodes as shown. By using the interpolating function the integral may be expressed by a
summation in terms of the stress function at the nodes of the element, as given by the following equations:
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in which feo, fo1, fe2, fe3 and foq = stresses in the concrete at nodes 0 through 4 respectively (node numbering
is according to Fig. 2a), (xo:, ¥0:;) = coordinate of the i/th element and ne = number of concrete elements.
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Fig. 2 Fiber Elements Implemented



Circular Trapezium Element Fiber Model Implementation

The discretization of a circular column by using a rectangular element is inaccurate and expensive in terms of
the number of elements needed to achieve an acceptable precision. Thus an element well suited for circular
cross-section columns was developed. A quadratic interpolation stress function was applied to a five node
circular trapezium element. The interpolation concrete stress function used for this element is:

fe=A+r(Bcos0+Csin0)+r2(Dcos20 +Esin20) (19)
The longitudinal strain in polar coordinates is given by:
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And the axial load and flexural moments are expressed as:
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To transform the integrals in the previous equations to summations, it is necessary to discretize the
cross-section. For this purpose, the circular trapezium element shown in Fig. 2b was used. In this case the
equations are not derived explicitly, instead an implicit form is used. The interpolation function has five
constants that may be found 1f the function is known at the five nodes. This leads to a system of equations:
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in which r,, 7y, ¢ and Ad are shown in Fig. 2b.

As may be seen in equation (24), the coefficient matrix in the system of equation depends only on the
geometry of the element. For computational speed, the inverse of this matrix may be computed and stored
before the actual analysis is to take place. The coefficients 4 through £ for every element are computed by
multiplying the inverse of the matrix of coefficient of that element by the vector containing the node stress
values. The discretized version of equations 21 to 23 are:
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in which the integrals are given by:
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FORCE-DISPLACEMENT ANALYSIS

The equations shown above are used to compute the moment-curvature relationship. The force-displacement
relationship may be computed by integrating the moment-curvature relationship along the column. Four
displacement components may be identified: the elastic flexure deformation, the plastic flexure deformation,
the elastic shear deformation and the plastic shear deformation. The flexure and shear deformation may be
readily calculated. The plastic flexure deformation is computed on the assumption of a second degree
parabolic inelastic curvature distribution, as proposed by Mander et al. (1984). The plastic shear deformation
was not included in this investigation as no inelastic biaxial shear model has been developed yet. Plastic
shear deformation are relevant, nevertheless, only for very short columns.

VALIDATION OF THE MODEL

To verify the model proposed herein, two different experiments performed by Otani and Cheung (1981) were
used. The columns tested (specimens SP-7 and SP-8) by Otani and Cheung had a 305 mm square
cross-section and a cantilever length of 1372 mm. The columns had 8 No. 7, grade 60, longitudinal bars. The
columns were detailed so that the flexure behavior would dominate. Specimen SP-7 was subjected to an
approximately square displacement pattern, in all directions, at the top of the column. Specimen SP-8 was
also subjected to an approximately square displacement pattern, but the maximum displacement occurred in
the east and north direction. Both columns were tested without axial load. As shown in Fig. 3 the agreement
between the model and the experiment is very good. It may be necessary to note that no intent was made to
get the best match, as normal average values were used in the constitutive models, because the necessary
data to match the material properties is not available, so average values were adopted. It may be possible to
get a better agreement fine-tuning the parameters, but the purpose of this investigation was not to match
exactly some experiments, but rather to develop an analytical tool for the simulation of column behavior
under axial load and biaxial flexure. No validation was made for circular columns as no experimental data
was found in the literature.
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CONCLUSIONS

Starting from first principles the basic equations of biaxial flexure are derived in both rectangular and polar
coordinates. A rectangular fiber element was implemented to model the moment-curvature behavior of
columns under biaxial loading. A circular trapezium element adequate for circular columns was also
implemented. The force-displacement behavior of the column may be obtained from the moment-curvature
relationship. This procedure was implemented and proved to be effective in simulating the force-
displacement behavior of reinforced concrete columns subjected to biaxial lateral loads. In general terms, the
model herein proposed may be used to simulate an experiment and to assess the fatigue damage of columns.

Within the context of a three-dimensional earthquake analysis procedure, the Fiber-Element model proposed,
used as a pre-processor, can provide the data to calibrate biaxial macro models used in three-dimensional
non-linear dynamic analysis programs. As a post-processor the model may be used to assess the fatigue
damage in members for a given deformation history.
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