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ABSTRACT

In this paper, seismic ground motion in the form of displacement time histories is synthesized using a discrete
wave number approach in conjunction with a propagator-based formalism. The synthesized earthquake event
considers the rupture of a 40 km long segment of the San Andreas fault, close to San Francisco. The choice
of this particular segment of the San Andreas fault is made because of its high probability for a magnitude 7
earthquake in the next 30 years, and its proximity to the San Francisco metropolitan area. Traces of particle
motions on the horizontal plane are computed at several points on the ground surface.
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INTRODUCTION

The M=7.1 Loma Prieta earthquake of October 17, 1989 struck the San Francisco Bay area causing 62 deaths,
3,757 injuries and over $6 billion in property damage. This area has been affected by five M>7 earthquakes
since 1812. The 1838 (M~7) and 1906 (M~8) earthquakes were associated with the portion of the San Andreas
fault in the San Francisco peninsula. The event of 1865 was probably associated with the same segment of
the San Andreas fault as the Loma Prieta earthquake. The probability of one or more magnitude 7 or larger
earthquakes along any of the faults in the San Francisco Bay region (specifically, the San Andreas, Hayward,
and Rodgers Creek faults) in the coming 30 years is estimated to be about 0.67 by the Working Group on
California Earthquake Probabilities (1990). In this paper, seismic ground motion will be synthesized due to
the rupture of the 40 km long segment of the San Andreas fault indicated in Fig. 1. The 30 year probability
for 3 magnitude 7 earthquake on this segment is estimated to be 0.23. The choice of this particular segment of
the San Andreas fault was made because of this high probability and because of the high economic and social
importance of the region.

METHODOLOGY

A discrete wave number approach in conjunction with a propagator-based formalism will be used for the
synthesis of seismic ground motion (Deodatis, Shinozuka and Papageorgiou 1990, Theoharis and Deodatis
1994, and Zhang and Deodatis 1996). This methodology is based on the work of Lamb (1904), Bouchon (1979),



Chouet (1987), and Dunkin (1965). The discrete wave number technique is used to propagate waves due to the
rupture of an extended seismic source through a 3-D layered half-space. The method is deterministic in the
description of the wave propagation. It can be probabilistic or deterministic in the description of the rupture of
the seismic source. With this method, it is possible to calculate the near-field and the far-field seismic ground
motion at any point of a layered viscoelastic half-space, such that the spatial variability of ground motion at
distances comparable to the dimensions of engineering structures can be estimated. All types of waves (body
and surface) are accounted for in the formulation of the problem. Ground motion time histories with frequency
content up to 3 Hz can be calculated. The extent and magnitude of permanent ground deformation can also
be computed, which is very important in the earthquake response of large scale engineering structures with
relatively low natural frequencies of vibration, such as bridges.

In very broad terms, the problem consists of solving the equation:

u(z,y,t) = / / / UKz, Ky,w) exp[—iK.z — iKY + wt] dx drydw 1)
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where u(z,y,t) is the displacement field in the space-time domain, and #{x;,%,,w) are the complex Fourier
amplitudes of the displacement field in the wave number-frequency domain. Closed-form analytic expressions
are established for #(x.,x,,w), and a (computationally expensive) inverse triple Fourier transform must be
performed to go from the wave number-frequency domain (K, 5,,w) to the space-time domain (z,y,t).

The wave radiation from the source is decoupled into P-SV and SH motions and the two problems are then
treated separately (3-D plane wave propagation) using the propagator-based formalism of Chouet (1987).
Analytical expressions established for the displacements due to unidirectional unit impulses are used to compute
the solutions for double couples associated with a strike-slip and a dip-slip fault. These solutions are finally
combined and integrated over the fault area to yield i(x., xy,w) in Eq. (1).

The problem requires a detailed description of both the ground and the seismic source. As far as the ground is
concerned, information is needed for the thickness, S-wave velocity, P-wave velocity, density, and attenuation
factor Q of each layer characterizing the earth structure in the study area.

The seismic source is described in terms of its dimensions and location within the earth structure, and in
terms of its rupture pattern. The source can be either in one of the layers, or in the half-space. The source
is discretized into a number of point sources, each one modeled by a double couple. Each double couple can
have a different final slip (strike slip, dip slip, or a combination of the two), a different rise time, and a different
rupture initiation time.

The evolution of the slip at a certain location on the fault plane as a function of time is described by the
dislocation function. Haskell’s model uses a ramp function for the dislocation whose Fourier transform in the
frequency domain is given by:

F(w) = o lexp(-iut;) — 1]+ 76(w) exp(~i ) @
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where w is the frequency in rad/s, t, is the rise time in seconds, and §(w) is Dirac’s delta function.
Papageorgiou and Aki (1983) define the dislocation function at a distance r from the center of the circular
sub-fault at time instant ¢ as:
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where C is a parameter depending on the shear wave velocity and the rupture velocity, o, is the effective stress,
v is the rupture velocity, v, is the shear wave velocity, v, is the healing velocity, 4 is the rigidity of the medium,
ro is the radius of each circular sub-fault, ¢; is the time rupture starts at the center of the sub-fault, ¢, is the
rise time and H is the Heavyside unit step function. There is no closed-formed analytical expression for the



Fourier transform of the expression shown in Eq. (3) due to its complexity. It can be approximated, however,
by a series of %, line segments, leading to the expression:

pro) = 2o [ L (%) YT+ 3L [ (-0P22) - (-082)] s
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and Aup being the final slip at a distance r from the center of the circular sub-fault. For n, = 1, the expression
in Eq. (4a) can be simplified with great accuracy as:

Flw) = Co.v, r(:, +r exp (:_:ﬂ) [exp (ﬂp) - 1] + 76(w) (5a)
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Denoting now by Au the following ratio:
A‘up
Aot (6)

where Aus™e’ is the final slip at the center of the sub-fault, it can be shown that Au and i, are related as:
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SYNTHESIS OF GROUND MOTION

For the scenario earthquake considered in this study, it is assumed that a 40 km long by 10 km deep portion
of the San Andreas fault would rupture during such an event. The rupturing segment relative to the San
Francisco Bay area is shown in Fig. 1.

An earth model including the Moho discontinuity is considered. The layering of the ground is shown in Fig. 2
with all the numerical values of the parameters describing the problem.

A barrier model with irregular boundaries has been utilized to calculate the distribution and the amount of
the final slip over the fault plane. The details of this barrier model with irregular boundaries will be provided
in an upcoming paper. The basic idea is that an underlying barrier model with regular circular boundaries
is transformed into a corresponding one with irregular boundaries using the spectral representation method
for simulation of stochastic fields. For the purposes of this case study, it is assumed that the underlying
barrier model with regular circular boundaries consists of four circular sub-faults of 5,000 m radius each. The
corresponding model with irregular boundaries is shown in Fig. 3. The rupture velocity is taken to be 2,000
m/s. The healing velocity is 2,200 m/s. Two types of dislocation functions are considered: the classic Haskell
type ramp function and the dislocation function of Papageorgiou and Aki (1983) for the specific barrier model.
The corresponding rise times for the barrier model with irregular boundaries shown in Fig. 3 are calculated
using the formula in Eq. (7).



The source is discretized into 65x17 point sources, each with a different amount of final slip and with a different
rise time. As indicated in Fig. 3, the maximum final slip is 10.50 m, and the minimum (non-zero) final slip
is 2.79 m. The maximum rise time is 4.8 s, and the minimum rise time is 2.6 s. The fault plane is vertical
(6 = 90°).

Three different cases of circular rupture patterns are considered. These three cases, displayed graphically in
Table 1, differ in the location of the hypocenter.

Two cases are considered regarding the relative final amounts of strike slip versus dip slip. A case with strike
slip only, where the final values for the slip are obtained using the barrier model with irregular boundaries for
an M=7.0 earthquake (see Fig. 3). And a case with equal amount of strike and dip slip, where the same final
slip values as in the previous case are assumed for both the strike and dip directions.

As far as the computational parameters associated with the triple Fourier transform shown in Eq. (1) are
concerned, 512x512 wave numbers are used in the wave number domain with an upper cut-off wave number
of 0.000947 rad/m, and 128 frequencies are used in the frequency domain with an upper cut-off frequency of
0.5 Hz.

Displacement traces and particle motions are computed at the seven locations indicated in Fig. 1. The first
five points correspond to the abutments of two bridges in the area, point 6 is in San Francisco, and point 7
is in Oakland. Figure 4 displays displacement time histories in the directions parallel to the fault trace and
perpendicular to the fault trace, at points 1 and 3 for the 7 cases described in Table 1. Figure 5 displays the
traces of particle motions on the horizontal plane at points 3, 4 and 5.

At this juncture, it should be mentioned that the results shown in Figs. 4 and 5 are the first ones from a
series of case studies that will be considered as part of a sensitivity analysis to examine the effects of several
parameters involved in the problem.
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Table 1. Descript on of cases considered.

Slip Type Rupture Pattern Dislocation
Function
Case 1 Strike slip [/, /\\ Ramp function
(N

Case 2 Strike slip 7 W\ Barrier model (as
%\\ described in text)
Case 3 Strike slip Barrier model (as
S \\\\\\ described in text)
Case 4 Strike slip Barrier model (as
P ))) )) ) ) ] described in text)
Case S Strike slip-Dip slip 7, N Barrier model (as
@ described in text)
Case 6 Strike slip-Dip slip ‘\\\\\ Barrier model (as
§ described in text)
Case 7 Strike slip-Dip slip Barrier model (as

il

described in text)

10km

Fig. 1 The 40 km long rupturing segment of the San Andreas fault and the location of
the seven points considered in this study.
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Fig. 2 Layering of the ground.
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Fig. 3 Distribution and amount of final slip over the fault plane using a barrier model
with irregular boundaries (M=7).
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Fig. 4 Displacement time histories at points 1 and 3, for the seven cases considered in
this study.
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Fig. 5 Traces of particle motions on the horizontal plane at points 3, 4 and 5, for the
seven cases considered in this study. The horizontal axis represents the direction
parallel to the fault trace. The vertical axis is perpendicular to the fault trace. All
numerical values are in meters.



