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ABSTRACT

A multi-stage tuned-mass-damper system is presented in this paper, which can solve several problems
inherited in the conventional tuned-mass-dampers. It consists of many oscillators that are attached at different
floors of a building structure. All oscillators are tuned to the fundamental frequency of the structure, which
completely decouples the vibration modes of the structure. The proposed system can thus suppress the
seismic responses of the higher modes as well as the fundamental mode of the structure. The system is also
robust in seismic performance and so light that it will generate insignificant overstroke impact on the
structure in an unexpected earthquake event.
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INTRODUCTION

A tuned mass damper (TMD) is an auxiliary system, attached to a main structure such as building, that can
help mitigate the structural dynamic responses by tuning its frequency to the predominant frequency
(fundamental frequerncy) of the structural system. It has been applied on about ten high-rise buildings in the
world to reduce acceleration level primarily for tenants comfort reason during strong windy seasons. Its
performance has been verified with extensive analyses, wind tunnel experiments and full-scale tests. The
TMD was also successfully added in some buildings such as theaters to suppress floor vibrations from human
movements. However, the TMD has not yet found its application for earthquake loads since its seismic
performance records are not consistent (Chowdhury et al., 1987). The primary reasons for the discrepancies
in the results are attributable to: a) in-phase motion between the TMD and the structure; b) non-optimal
design parameters of the TMD for various seismic inputs; ¢) energy transmission among different vibration
modes of the structure.

The in-phase motion is inherited in any TMD since the inertia force on the TMD is always in phase with the
effective load on main structure and certain time is needed to set the TMD in motion. This action becomes
even more significant when the structure and the TMD are subjected to an impulsive type of earthquake loads



with short ascending period before reaching its maximum shaking intensity. The heavier the TMD, the
stronger the in-phase action.

The optimal design parameters of the TMD are dependent upon combination of the type of external loads and
the interested response quantities (Warturbon, 1982). Due to the uncertain nature of earthquake, the
“optimal” design parameters can only be selected approximately based on some postulated earthquakes. This
approximation defeats the TMD performance to a certain degree.

A conventional TMD installed atop a building conveys energy flow between the damper and all natural
modes of the building structure due to coupling. It absorbs vibration energy from the tuned fundamental
mode of the structure, but it transfers energy into higher modes. This energy transmission amplifies the higher
mode responses and counteracts the performance of the TMD for the mitigation of total structural responses.

The objective of this paper is to present a multi-stage tuned mass damper (MSTMD) to solve the above
issues. The proposed MSTMD involves many identically-tuned mass dampers installed at different floor of a
building.

MECHANISM OF TUNED MASS DAMPER

Consider a single degree-of-freedom structural system (SDOF) subjected to a base acceleration. The
structural responses can be reduced by adding an oscillatory mass (TMD) connected in series with the
structure.

The equations of motion for the TMD and the structural system can be written as:
msis + (Cs + Cd)).(s + (ks + kd)xs - cdxd - kdxd = _mskg(t) (1)
m,X, +c.X, +kxg —¢ X, —k,x, =-mX, (t) 2)

where x_ and x, are displacements of the SDOF structure and the damper with respect to the ground.
Quantities m, , ¢, and k, (i=s or d) are masses, damping coefficients and stiffness. Summation of Eqs. (1)
and (2) leads to

(ms + md )Xs + Csxs + ksxs = —(ms + md )Xg (t) - mdy (3)

in which y = x, —x, , denoting the relative displacement of the damper with respect to the SDOF structure.
Equation (3) indicates the addition of a ‘force term’ —m,§y for an SDOF system. When X _(t) is considered as

a harmonic excitation or a stationary random input, Eq. (3) can be rewritten into the following power balance
equation (Chen and Soong, 1991):

¢, <Xi >=—(m +m,) <X X, >-m; <yx, > 4)

in which <e> is the time average in one cycle for the harmonic excitation and the mathematical expectation
for the stochastic input. The quantity ¢, <X’ > is the dissipated power due to the structural damping;
—(m, +m,) <X %, > is the input power from the ground motion, m, <yx, > is the power flow transmitting

from the structural system to the damper. The power flow is an appreciable scale to measure the damper
performance. The larger the power flow, the smaller the mean-square velocity of the structure. The maximum
power flow is obtained when the relative displacement of the damper with respect to the structure lags the
structural displacement by 90°. In this case, the relative acceleration y(t) is in phase with the velocity
response of the structure and the power flow is equivalent to a dissipated power. The effective damping
coeflicient can therefore be written as:

<yx >
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Cor = C, + 1My



The optimal design parameters for the damper can be determined by maximizing the effective damping
coefficient in Eq. (5). They can be expressed as (Warturbon, 1982):

Oy = 1/ (14 1), Eopr = 30/ [B(1+ )] (6)

where p=m,/m; o, and £ are the optimal damper-to-structure frequency ratio and the optimal

damping ratio.
MULTI-STAGE TUNED MASS DAMPER

Equations of Motion

Consider an n-story building with n-oscillator respectively installed at each floor of the building. The
oscillators are of identical damping and frequency properties. They are all tuned to the fundamental frequency
of the building structure and therefore are named as the multi-stage tuned mass damper (MSTMD).

The equations of motion of the structure-damper system in Fig. 1 can be expressed as

(M, 0}{){} [c, Csd}{ }fK st}{ } o0 E }
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in which s and d are associated with the degrees-of-freedom of the structure and dampers;
- T . . .
X, = {x Xy, an} and X, {x, d,de,...,Xnd} , representing displacements with respect to the ground,
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M, and M, are mass matrices; K, and C, (i, k=s, d) respectively represent stiffness and damping matrices
between system i and system k; and E_ and E, are respectively the load vectors that take the unit elements at
all entries for the structure-damper system under consideration. The damper masses are considered to be
proportional to the building floor masses, i.e., M, = uM_. The stiffness matrix K_ can be decomposed into
K® +K,, in which K is the structural stiffness without presence of the dampers. The cross stiffness
matrices, K, and K, are diagonal matrices and they can be expressed by ~K,,. The damping matrices

C..C,, and C_ have exactly the some structure as stiffness K ,K,, and K ,, respectively.
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The dampers stiffness and damping matrices, K, and C,,, are diagonal matrices and they can be respectively
expressed by w:M, and 2§,0,M, with ©, and &, representing the damper frequency and damping ratio. By
denoting the mode shape matrix of the structural system as @, that is normalized with structure mass matrix
M, , the displacements of the structure and dampers can be represented into:

’ 1 =@ 8
L‘D —o J Q, q ®)
in which m=/u/(1+p). Substituting Eq. (8) into Eq. (7) and pre-multiplying both sides of the resulting
equation by @' leads to the following equations in the modal space after employing orthogonal conditions:

2
2&kscoks . + @

Gy + lop de 1+ksuqks+mqkd =-T.X, (1) %)
G + 28404444 +(qukd +mg,, = rnrksxg (t) (10)

In the above, q,, and q,, are the k-th modal displacements of the structure and the dampers. The quantities
€. . o, and I are damping ratio, frequency and mass participation factor of the k-th mode of the structure.



Transfer Functions for Structural Responses

When X, (t) = Xg(a))ej“", the steady-state modal displacement of the structure in Eqs. (9) and (10) can be
expressed as q,,(t) = ~T, Hy, (@)X, (@)’ in which

H' (@) = 1/H,(@)+m’e’ an
O =1/, @H, @)1 - "
H,(0)=1/(@ -0+ 200) , H,@)=1/[0L/(1+0)-0'+ 20, /(+pe]  (12)
The total displacements of structure can then be expressed by x,(t) = X;(co)f(g (0)e™ where
X;(@) = - 2LLHL @ 6)  (=1,2,...0) (13)
k=1

In order to show improvement of the proposed MSTMD, the conventional TMD is considered to be installed
at the second floor from the building roof. Since the equations of motion in frequency domain are linear
algebraic equations, the dynamic displacement at the second floor from the roof can be derived without any
difficulty as x,_,,,(t) = X{1_,,,(@)X, (@)™ in which

Xir (@) = —;rksH;:(m)(bks(i) (14)
and
H (0) = 1+¢,.(n—-1)m,[1 +nc0 H,(@)]/T,, HO (0) (1)
1- m,0°[1+0°H, (@)]2,¢% (n - DH? (@)
HO(0) = 1/ (0%, - 0* + j2£,0,0) (16)

The dynamic displacements of structure without presence of damper can be simply represented by
X, (1) = X (@)X, (0)e"™ where

X? (@) = -3 LLHO @)y, () (=12, .. ) (17)

Mean-Square Responses of Structure Under White Noise Input

When the building structure is subjected to a White Noise input with power spectrum Ss, (w) =S, (constant),

the mean-square absolute accelerations at building floors can be respectively expressed as
“ 2
<(X,+%,)" >=8, f\l—cozX;(m)‘ do (18)
for the MSTMD application.
<(%, +%,)° >=8, _rll—coZXff)(m)| do (19)
for the structure without presence of dampers.

Equations (9) and (10) can be rewritten in the form of power balance (Chen and Soong, 1991)
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The right-hand terms in Eqs. (20) and (21) are respectively defined as power input to the structure and to the
damper from ground motion. They are denoted here as P’ and P{". The m <{,q,, > is the power flow

transmitting from the structure to the damper, denoted as P{” and m < §,,4,, > can be expressed by —PY’
due to the stationarity of the random input.

Equations (20) and (21) indicate complete uncoupling among vibration modes of the structure due to
presence of dampers at each floor. The power input to the damper P® is zero for every mode as shown in
the report by Chen and Soong (1993). The power thus flows unidirectional from the structure to the dampers
for all vibration modes as shown in Eq. (21), which is equal to the dissipated power in the dampers.
Consequently, the MSTMD suppresses seismic responses of its higher modes as well as fundamental mode.

ILLUSTRATIVE EXAMPLE

A six-story building as shown in Fig. 1 is considered as an example to illustrate the difference between the
MSTMD and the conventional TMD and to demonstrate the seismic performance of the proposed MSTMD
system. The floor mass throughout the building is equal to 1.0 kip sec’/ft while the interval stiffness is
assumed to be 5000 kip/ft. The natural frequencies of the building structure are 17.0, 50.1, 80.4 105.9,
125.2, and 137 .4 rad/sec, respectively.

The modal transfer functions defined in Eqs. (11), (15) and (16) are presented in Fig. 2 as a function of the
damper frequency. The damper-to-floor mass ratios are respectively taken as 0.065 and 0.24 for the MSTMD
(six dampers) and for the TMD (one damper at the 5th floor). It is observed that the first mode transfer
functions of the structure with the MSTMD or with the TMD can not be distinguished though the damper-
to-floor mass ratio of the MSTMD is only about one-quarter of the one for the TMD. They are both reducing
the modal transfer function of the structure alone (no damper). The MSTMD has insignificant influence on
the second and third modal transfer functions and further reduces their magnitudes around the fundamental
frequency because of the complete uncoupling among vibration modes of the structure.

The six-story building is subjected to a white noise random ground motion. This case is important not only
because of ease for the mathematical manipulation but also because of the practical implication. The wide
band ground input is one of the worst scenario for the MSTMD to be effective for seismic response
reduction. The modal power flows transmitting from the structure to the damper are shown in Fig. 3 as a
function of the frequency ratio between the damper and the fundamental mode of the structure and in Fig. 4
as a function of the damper-to-floor mass ratio with the damper tuned to the fundamental frequency. It is
seen that the power flows are always positive, indicating the unidirectional transmission of energy from the
structure to the damper or the response reduction for all modes of the structure. Figure 3 also implies that the
maximum power flow is reached when the damper frequency is tuned to the structural frequency. Figure 4
indicates the increasing power flow as the mass ratio increases. But, the rate of the increasing power flow
becomes small when the mass ratio is greater than 0.075, implying the practical range for the selection of the
mass ratio.

Figure 5 shows the reduction of the mean-square modal accelerations as the frequency ratio changes. It
confirms the conclusion drawn from Fig. 3. It is noted that the mean-square modal accelerations are reduced
to about 35% by adding the MSTMD. The mean-square floor accelerations are presented in Fig. 6 as the
damper frequency varies. About 50% reduction can be observed for the mean-square accelerations.

PRACTICAL CONSIDERATIONS

The proposed MSTMD system is more robust than the conventional TMD. When one of the dampers is out
of order during strong earthquake, the remaining dampers will take over and can still effectively mitigate
dynamic responses of the structure. This redundancy of damping effect leads to a stable dampers performance



even if the dampers parameters slightly deviate from their optimal values due to reasons such as manufacture
tolerance.

The masses of the dampers in the MSTMD system are substantially lighter than one big mass in the
conventional TMD. The in-phase motion between the dampers and the structure is significantly smaller in
magnitude and shorter in period before the dampers are set in motion out of phase with the structure
movement. This effect becomes more significant when the dampers are not perfectly synchronized in their
initial movement during earthquake. Under a severe earthquake event, overstroke impact will not generate
large inertia forces on the building structure, which may otherwise cause severe damage to the structure.

The number of dampers in the MSTMD system can be practically smaller than the number of building story.

It is prudent to limit the number of dampers in such a way that every activated mode of the structure by an

earthquake with wide frequency range is added with one damper. This topic is beyond the scope of this paper

and will be discussed in a subsequent paper.

The total cost of the MSTMD system can be roughly grouped into cost for engineering design, material,

manufacture, maintenance and occupied space. It is expected comparable with that of the conventional TMD

base on the following considerations:

1. The engineering design is less complicated due to less stringent design requirement for dampers.

2. Demand for more dampers can be compensated for with the material saving from a lighter damper.

3. Less amount of labors is needed for making one damper due to less sophisticated manufacture process.

4. Same design and working environment for the dampers only warrants need for inspecting one or two
dampers and then replacing parts without discrimination.

5. The MSTMD system can make full use of some spare spaces at different floors of the building instead of
a big area for a conventional TMD and its accessories.

CONCLUDING REMARKS

The presented MSTMD system consists of many oscillators that are all tuned to the fundamental frequency of
the building structure. The multiple tuning completely decouples all modes of the building structure and
conveys no power transmission among the modes. The MSTMD consequently suppresses seismic responses
of the higher modes as well as the fundamental mode of the structure. The seismic performance can be
measured with the power flow transmitting from the structure to the damper or equivalent damping
coefficient defined in Eq. (5).

Analyses on the six-story building showed about 50% reduction of the mean-square absolute accelerations by
adding a MSTMD system when the building is subjected to a white noise base input.

In addition to the performance improvement, the presented system is robust. It will not generate great inertia
forces on the building structure in the event of an unexpected earthquake. The light dampers are also easier
to set in motion out of phase with the structure.

Although the MSTMD seems a promising system for earthquake application, many technical considerations
need to be addressed before practical applications. Future research is necessary in the following areas:
1).shake table tests for confirmation of seismic performance; 2).development of design criteria for the
determination of the number of dampers and their distribution in building; 3).cost evaluation.
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Fig.1  Example building structure:
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Fig.2 Comparison of modal transfer functions
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Fig.5 Mean-square modal acceleration vs. damper-structure
frequency ratio: £ = 0.03,&, = 0.15, p = 0.065
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Fig.6 Mean-square floor acceleration vs. damper-structure
frequency ratio: £ =0.03,&, = 015, p = 0.065



