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ABSTRACT

Methods are presented for stochastic interpolation of power spectra using observed earthquake ground motion
time histories. For this purpose, we extend the theory of conditional random fields developed by Kameda
and Morikawa (1994). Then properties of spectral uncertainties are made clear and we derive the estimation
errors of interpolated spectra. Furthermore, in order to examine the applicability of the presented methods,
numerical examples are presented using simulated earthquake ground motions.
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INTRODUCTION

The goal of this study is establishment of methodology for the stochastic interpolation of earthquake ground
motion fields. For a step of this purpose, we develop the theoretical framework to identify the spectral
properties using the observed time series.

The theories or methodology with respect to the random fields involving the observed data as condition, which
we call “conditional random fields” (CRF), have been investigated from various viewpoints by many researchers
(e.g. Kameda and Morikawa, 1994; Kawakami, 1989; Vanmarcke et al., 1991). Most of these methodology,
however, require a priori information about the spectral properties of the random fields. According to cit-
cumstance, these requirements in the formulation may restrict the applicability of the methodology to actual
phenomena.

If we estimate a random field using a certain ‘fixed’ spectral properties determined on the basis of the obscure
knowledge, we must be prepared for risk that the ‘fixed’ ones are methodically different from ‘true’; namely,
that we may base the estimation which is quite different from true one. Moreover, there is no way to make
such differences clear.




Therefore, we propose two methods to estimate spectra with uncertainties on the basis of the observed time
series. The uncertainties are caused by various sources of randomness: lack of information, microscopic
fluctuation of source and medium, and so on. Hereafter, we call such type of spectra ‘stochastic spectra’
in order to distinguish from ‘fixed’ ones. In the following sections, we discuss the stochastic spectra with
earthquake ground motions in mind, however, presented methods are useful for general time-space random
fields such as wind speed fluctuations, sea waves, etc.

STOCHASTIC INTERPOLATION OF GROUND MOTION SPECTRA

Discussion of Stochastic Spectra using Cepstrum Concepls

In order to deal with power spectra as stochastic spectra, it is necessary to discuss stochastc processes on
frequency domain, so-called “frequency series.” Generally, the stochastic properties of frequency series are
provided by cepstra defined in quefrency domain. In addition to the cepstra, we must introduce the “cross
cepstra” in the quefrency domain to treat multi-variate frequency series which we shortly bring up. Thus, we
are going to discuss both the time and frequency series freely using parameters defined in three domains of
time, frequency and quefrency domain with the Fourier transformation and the inverse one.

To precisely discriminate among parameters belonging in the each domain, we use superscripts ®, (N, and @
for time, frequency, and quefrency domain, respectively, if necessary. Particularly, since there are no terms for
coherence and phase lag functions derived from cross cepstra in quefrency domain to the best of the authors’
knowledge, the domain in which these functions belong is specified by the superscript (£} or (9 attached on
the right shoulder.

In dealing with the stochastic spectra, we must surmount some difficulties. Many of them regarding the way
to give the shape of cepstra. However, under the consideration that the uncertainties of spectra are caused by
sources of randomness mentioned in the previous section, we are safe in treating the fields of stochastic spectra
as homogeneous random fields except for the peculiar vibration character effected by distinct or deterministic
variations of medium or ground structure. In other words, if there is little structural irregularity significantly
affecting the general features of the vibration character, we consider that cepstra are the same at all the sites
and that coherence functions(? between two frequency series are modeled in the following function which is
the form often used for homogeneous fields (Chernov, 1960):

Coh‘?(zo,q) = exp[-azo g, (1)

where @ is a constant, ¢ is the quefrency and zo is distance between the two sites studying the frequency series.
The phase lag functions(? are set to zero for any combination of a pair of sites because it is unnatural to
consider the situation that the spatial transition of peaks or dips appearing on power spectra is orderly in the
case where the sites are located on ground with the similar structure.

Method I — for homgeneous ground condition ~ “Method I” provides a basic methodology to utilize for the
limited case where time series are observed at some sites on stochastically homogeneous ground conditions.
This method has basis in the fact that if the time series U;(t) at site i (i=1,2, ..., n) is a zero-mean Gaussian
process, its discrete Fourier coefficients series A;; and By, are also zero-mean Gaussian processes, where U; (t) is
stochastic process . In this section, we show the way to stochastically interpolate the power spectra, following
the framework of Method I established by Morikawa and Kameda(1994).

Replacing time series U;(t) with frequency series Ajx = A;(fi) or Bix = Bi(fi) (i =1,2,...,n) and introducing



quefrency g, we obtain the Fourier series in the quefreny domain, as follows:

Ai(f) = Y { A cos(2mar f) + Bigsin(2mgi f) } (2a)
k

Bi(f)=)_ {A,-,—c cos(2mgpf) + Bz sin(27rq,—cf)}. (2b)
k

For our goal, hereafter, we discuss Eq.(2) applying the theory of conditional random fields (Kameda and
Morikawa, 1994) to frequency-quefrency domain.

Then we statistically determine the cepstra, which describe the stochastic properties of the frequency series,
by observed time series. On the basis of the supposition that the random fields!”) are homogeneous, the
arithmetic means of observed cepstra, which are calculated from observed time series, are used as cepstra
at all the sites. For the coherence function?, we use the Eq.(1) determining the value of parameter a with
the method of least squares. From the above procedure, we can immediately reach the stochastic properties
of the conditioned Fourier coefficient series Aj(f | cnd.), Bj(f | cnd.) and simulate the realized values of
Fourier coefficients at site j (j = m + 1,...,n); where the word “cnd.” means that the quantity under
discussion is conditioned by u;(t);i = 1,2,...,m which are realized time series of U;(t) and m is the number

of observation sites. Furthermore, the power spectra are obtained through smoothed values of “raw” power
spectra {A,(f | end.)? + B,(f | end.)?}/4.

There are theoretically few difficulties in estimating the Fourier coefficient series!f? conditioned by observed
data. In consideration of the power spectra, which is our goal, it is to be noted that the power spectra contain
no information with regard to phase angles except for minimum phases, while the Fourier coefficients() do
contain the information. In other words, the power spectra are independent of the phase angles, while the
Fourier coefficients are dependent upon them. This means that Method I derives the various power spectra as
a function of an apparent velocity ( = phase lags ) for the same dataset of observed time series.

In order to avoid such problems regarding the phase angles, we must correct the phase lags between the
observed time series before we set about the stochastic interpolation of power spectra. Thus, calculating the
phase lag functions{/? ¢,,(f) between the sites 1 and p (p = 2,3, ...,m), we shift the phase angles of Up(t) for
each harmonic components so as to reduce ¢1,(f) to zero, which is the technique usually used.

Method II — for weakly inhomgeneous ground conditions Since Method I is theoretically simple, we can readily
reach the goal, which is the stochastic interpolation of power spectra, using the theory of conditional random
fields. However, the applicability of Method I to real phenomena is limited by contrary factors. Although we
assume that the time series are observed at sites with homogeneous ground structures, it is difficult to carry
out the observation of earthquake ground motions under such ideal conditions. In this section, in order to
achieve more extensive applicability we devise Method II in which we can use records observed at the sites
with weakly inhomogeneous ground structures as the condition.

In this method, in order to consider the variety of ground structures, we divide the stochastic spectra into the
term reflecting the deterministic feature of the ground structure and randomness from the deterministic term.
Thus, the power spectrum S;;(f) at site ¢ (i = 1,2,...,n) are represented by

f
Sii(f) = S5(H)Su(f), 3)
where S;(f) denotes the deterministic site effect which is independent of events, and Sf,( f) is the random
component with different stochastic properties for every event. Since the specific site characteristics can be
represented by the relative ratio to reference site, as which we set site 1 without loss of generality, Eq.(3) is
rewritten as

Sulf) = SHANSHY) (=12,...,n), @



where S5(f) = S&(f)/581(f). To apply Method I to sf(f) in Eq.(3) (or S%.(f) in Eq.(4) ), we need to extract
the contribution to SP(f) and S,f‘(f) in Eq.(3) ( or SL(f) and S’f.(f) in Eq.(4) ) from Fourier coefficients
series Agx(f) and Bix(f) in spite of the essential difficulties. Therefore, we consider that it is appropriate to
deal with power spectra instead of Fourier coefficients in order to separate the power spectrum S;;(f) into the

deterministic and the random components.

If U;(¢) is a stationary Gaussian process with zero-mean, its “raw” power spectrum follows the x? distribution
with a degree of freedom 2. However, since the power spectrum Si;(f) is ordinarily estimated in smoothed
value of the “raw” power spectrum, its probability distribution is x? distribution with large freedom. In this
study, to treat power spectra as the stochastic processes in the frequency domain substitute the log-normal
distributions for theirs. The marginal PDF of power spectrum S;;x at frequency fi and site i are represented
as

e Yo\ 2
Fsisn (siik) = —\/%C'k_exp ["% (Eﬁ%—'z—ﬂ) ] (i=1,2,...,n). (5)

There is little problem in this appropriation because x? distributions have large freedom and we are not after
accuracy of the probability of extreme values. It is convenient, if anything, to use the log-normal distribution
for Eqs.(3) and (4) decomposed into product. Thus, we discuss the stationary Gaussian processes derived from
the logarithm of both sides of Eqs.(3) and (4):

nSu(f) = In S5(H) + sk, WmSu(f) =msKH) +lnskp)  G(=12...,0). (6)

We determine In S3;(f) ( or InS[;(f) ) at site j (j = m +1,...,n), where we have no information regarding
the ground motion, using the linear interpolation of observed values at site ¢ (i = 1,2,...,m) because of the

supposition that S5(f) (or S%(f) ) are deterministic values changing gradually in the study area.

We can use only SL(f) in the case where we must estimate the site effects on the basis of the observed values
without a priori information with respect to them. We show the method of determination of Sf;(f) using the
observed values. From the assumption that S,fl«( f) belongs on a homogeneous random field, namely S,f,-( kD)
has one and the same population at all the sites, the arithmetic mean of Sf,( f) over many events may be
independent of the site. Therefore, we can obtain the following relation:

step = S8 _ S0 EdSE(UN _ EelSa(f)]
" Sh(f) 85,00 -ElSt (] EelSu(H)

where E.[ - ] denotes the arithmetic mean over events. Since E.[S;;(f)]/Ee[S11(f)] can be replaced by the
geometrical mean of S;;(f)/S11(f), the optimal estimator of S%;(f) is updated every event using the geometrical

(7)

mean over all the spectral ratios S;;(f)/S11(f) observed in the study event and former events.

If we have a priori information with regard to S5 (f) ( or S5(f) ), we can obtain the optimal estimator of
S5%(f) (or SL(f) ) updating it every event by means of the method of Bayes’ statistics. This means that we
can exhaustively use the information we have using the presented method.

On the other hand, the frequency series In S,f,( f) (i = 1,2,...,n) are stationary Gaussian processes with
zero-mean. As Sf,( f) represents the random component excluding site effects, the cepstra and cross cepstra
of In S,f,( f) can be determined under the same treatments mentioned in previous section. As similar to the

Fourier coefficient series, we represent In S,fi (f) as

InSk(f) = 3 {Ag cos(2maef) + Bygsin(emgef) }, (8)
k

and we can imediately obtain the stochastic characteristics of In SL (f) § =m+1,...,n) conditioned by the
observed time series using the theory of conditional random fields.



Table 1 Specifications of pseudo-earthquakes

Magnitude Epicentral Dis. Apparent Veloc.

M Alkm] v[km/s]
S2 EQ1 6.0 80 1.0
o) EQ2 7.5 90 1.5
e EQ3 6.0 40 15
k EQ4 7.0 150 2.0
1000m@250m EQ5 6.0 100 1.5
EQ6 6.5 60 1.0
Fig.1 Site locations for simulation of pseudo- EQT 8.0 200 3.0

earthquake ground motion fields

The In Sf,( f) may be non-zero-mean Gaussian process because S,f,( f), which denotes a fluctuation of the
spectral ratio to the spectrum observed at site 1, includes the contribution of the deterministic term S55.(6).
Therefore, dividing In .S'!,( f) into the DC-component and the remainder, which is the stationary Gaussian
process with zero-mean, we make their interpolation separately and then combine them. On one hand, the
DC-component of In SL- (f) at site j (j =m+1,...,n) is obtained by means of the linear interpolation as the
case of §%;(f) (‘or S§;(f) ). On the other hand, the remaining zero-mean Gaussian process is stochastically

interpolated as the case of In Sfj( f). Finally, we obtain In SL-( f) from the sum of the DC- and the random

components.

From the above procedure, even though we have no a priori information regarding the spectral characteristics,
we can determine the site effect ST;

we use the linear interpolation and the update by means of the geometrical mean of spectral ratio for S;-'j( ,

(f) and the random component SJf-J-(f) at site j ( = m+1,...,n); namely,

and the linear interpolation and the theory of conditional random fields for .S'ij (n.

For the determination of S;;(f) (j = m +1,...,n), we derive Aj; and (j in Eq.(5) combining S¥;(f) and
St.(f) as follows:

At =10 85 (fe) + EDn S (fi) | end], ¢% = VarlnS(f) |end]  (G=m+1m+2,...,7), (9)

where S';-'j (f) is a estimated value of S;]-( f). Eq.(9) provides the stochastic character of the power spectrum
S;;(f) at site j conditioned by Sii(f) (i =1,2,...,m) under the approximations of Eq.(5).

Note the following issues: in the case where there is no a priori information with respect to the power spectra,
since we cannot detect the random component, Sf,-(f) becomes S11(f) (i = 1,2,...,m) for the first event.
Therefore, S;;(f) (j = m + 1,...,n) is determined by means of the linear interpolation of InSj(f) (¢ =
1,2,...,m) as the earthquake ground motions are observed for the first time.

COMPARISON OF THE TWO METHODS

In order to compare the two methods and examine their applicability, we make a “blind test” using random
fields which are numerically generated under a given stochastic properties. In the blind test, we simulate a
random field in time-space as a target and compare the power spectra of target with the ones estimated by
means of Method I or II under the condition that part of the target is observed.




8.0

°
o

. L
- [S1 - |82 . S2 =~ 52
i JJM)\/\/\J\\~ i )\MM i 2 ; 2
““o.0 “o.g 0.0 - =
L OO pauiner ter f o e Frosuency thzy 07" e  begenes iy 0
8.9 8.0 50.0
iz |85 = |83 - [S3
“o.g n.o ; 0.0
B0 vcvmer P S SRS Foacurrer tny 00 S C breweney 03 10
L84 50.0
S1 S2 S$3 S4 S5 .- [s4 S1 S2 S3 S4 SSf .."s4
Obaervation Site f} Obacrvation Site V;E 32 ‘
Observed | % Observed | 23 A (L) v
= = = = Simulated e wme "8 wae LT < Simulated 3% o U0S 13.0
Feunuency (Hyl Frogeaasy [H7] Froavency Mzl
(2) EQ1 (b) EQ7

Fig.2 Comparison between simulated power spectra and corresponding targets for Case 1 (left column: observed power
spectra, middle column: simulated by means of Method I, right column: simulated by means of Method II)

We generate a pseudo-earthquake ground motion field, which is used as the target, at five sites on the z axis
shown in Fig. 1 using the technique of conditional simulation (Kameda and Morikawa, 1994). Then, we give
appropriately seven sets of magnitude M, epicentral distance A, and apparent velocity v as shown in Table
1 as pseudo-earthquake, and one-sided power spectra at site Sp and cross spectra between sites Sp and Sgq
(p,g=1,...,5p < q) as follows (Kameda, 1987; Kawakami and Sato, 1988):

2
power spectrum:  Gp(f) = 7° 7?5; 2(?%2) 5 % r{f, zp), (10a)
(- @)} ()
cross spectrum: Spq(f, To) = 1/Spp(f)Seq(f) exp [—- f_f_:?_o_] exp [—aM] , (10b)

2y

where i = +/=1, v, fo, and 8, are respectively peak RMS acceleration, predominant frequency, and band
width, which are regression function of M and A in km, and « is distortion constant which is fixed at 1.0
in this study. r(f,z,) represents the spectral ratio between the sites S1 and Sp. In following calculation, we
consider the two cases:

e Case 1: The power spectra are same at all the sites; r(r,zp) = 1,

e Case 2: The power spectra have some differences;

2
r(f,zp) =10+ \/110_1,, (ﬁ) . (11)

Note that the author does not intend to claim these formulas Eq.(10) as a standard form of the ground motion
spectra. As a purpose of this study is the construct a probabilistic framework of the subject matter, they
are used just for the purpose of numerical illustration. Moreover, above equation forms are not important,
because our methods do not require such a priori information and are independent of the particular model
representing the earthquake ground motion.

We regard a wave field obtained through the above procedure as the target. The target field is compared with
the simulated power spectra at sites S2, S3, and S4 by Method I or II under the condition that the wave forms
are observed at sites S1 and S5. Of course, we have no information about the “true” spectral characteristics.
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Fig.3 Comparison between simulated power spectra and corresponding targets for Case 2 (left column: observed power
spectra, middle column: simulated by means of Method I, right column: simulated by means of Method II)
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Fig.4 Conditional mean values and standard deviation of the power spectra estimated by using Method II (EQ7, Case
2)

Figs. 2 and 8 show the simulated power spectra and corresponding target ones for EQ1 and EQ7 under Cases
1 and 2, respectively, using the two methods, where the results for EQ1 by Method II are obtained through the
linear interpolation. In Case 1 (Fig. 2), we cannot point out the obvious difference in EQ7 between the results
obtained through the two methods. On the other hand, in Case 2 (Fig.3), because the different spectra
are given at each site, there are some marked differences between the target and the simulated spectrum.
Especially the target and the spectra simulated by Method I are sometimes completely different because of the
inhomogeneous fields such as Case 2 in the method. However, the results from Method II are more harmonious
with the target than Method I.

These numerical results confirm our expectation that Method II is more applicable to various ground conditions
than Method I. Therefore, in the following analysis, we discuss Method II without notice.

VARIANCES OF INTERPOLATED SPECTRA

It is easy to derive the “raw” power spectra simulated by Method I, which are the spectra before the smoothing
and follow the x? distribution. The estimation error of smoothed power spectra, however, depends on the



method of smoothing. Thus we must consider the various methods of smoothing and analyze the estimation
error for each method. On the other hand, for Method II we can uniquely derive the estimation error using
the parameters for log-normal distribution represented in Eq.(9). In Method II, it should be noted that the
systematic errors are involved with the approximation of the probabilistic distribution, however, we consider
that such error is not important for our goal as we have mentioned in the previous section.

Fig. 4 shows the conditional mean values and variances of the power spectra estimated by using Method II
in case where the wave forms are observed at two or three observation sites for the psudo earthquake fields
of Case 2. It is observed that the differences between the target and simulation are small with increasing the
number of observation sites and decreasing the distance between the observation site and the site where the

power spectrum is estimated.

CONCLUSIONS

On the basis of the theory of conditional random fields, we established two methods for stochastic interpolation
of power spectra using the observed time series of earthquake ground motion. While in one method (Method I)
for homogeneous ground conditions, we treated the Fourier coefficients as frequency series, in the other method
(Method II) for weekly inhomogeneous ground conditions, we discussed power spectra which were divided into
the site effect and random component. Under those method, the stochastic properties of spectral uncertainties
were derived theoretically. Furthermore, from this we can evaluate the estimation errors of the stochastically
interpolated spectra for Method II. The numerical comparison of the two methods suggests that we can obtain
reasonable results through Method II, even though there are some inhomogeneous ground structures.
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