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ABSTRACT

For suspension bridges which subjected to long period ground motions, the current response spectrum modal
combination methods (such as SRSS, CQC, DSC and SMAM) often significantly underestimate or
overestimate the maximum tower responses (displacements and bending moments) about 20-35%, compared
with the results from time history method. Nevertheless, these methods continue to be used in seismic
analyses of suspension bridges. In this paper, a new modal combination method is developed and applied to
response spectrum analyses of two domestic suspension bridges — Shantou Bay Bridge and Tiger Gate
Bridge. A comparison among the results abstracted from the new method, CQC method, SMAM method and
time history method respectively is carried out. The results show that the new method can give good results.
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INTRODUCTION

Because the response spectra calculations have lost all information on sign and time when the maximum
displacement etc. occurred, the use of response spectra techniques is complicated by the difficulty of
combining the maximum modal responses for multiple degree-of-freedom structures. To find what
contribution or sign each mode should have at the same time, several accepted combination methods have
been developed and used in seismic analyses of structures. Among these methods, SRSS(Square Root of Sum
of Squares) method is the most commonly used method. However, when some of the modes are closely
spaced, the use of SRSS method may result in grossly underestimating or overestimating the maximum
responses. In 1969, Rosenblueth e al suggested a Double Sum Combination(DSC) method assuming that
the modal responses are statistically correlated. Afterwards, Humar(1984) and Gupta(1990) updated the
original DSC method. Furthermore, a formulation known as the Complete Quadratic Combination(CQC)
which is based on the theory of random vibrations, has been proposed by Kiureghian (1981). The method may
be considered as an extension of the SRSS method. However, these methods mentioned above don’t account
for the perfect modal correlation when the frequencies are in the higher range. Hence, Lindley and
Yow(1980), Hadjian(1981), Gupta(1984) proposed their own techniques to consider the correlation
between modes below or greater than rigid frequency. In 1993, the original CQC rule was extended



(Kiureghian et al.) to account for the effects of high-frequency modes, narrow-band seismic input and cut-off
frequency. Additionally, Tsai (1984) pointed out that the combination between the maximum responses of
two modes converges to an algebraic sum when both modal frequencies are sufficiently low or high
eventhough they may not be closely spaced with each other. Consequently, an Advanced Response
Combination (ARC) technique was developed. The Sum of Modal Absolute Maximum (SMAM) response is
also an acceptable method. But it’s seldom used for ordinary structures because it’s very conservative.

Among the methods above, the CQC modal combination rule for seismic analysis of ordinary structures has
received wide recognition by researchers and practitioners. However, large errors have been found for these
methods(including CQC method) in the seismic analyses of several domestic suspension bridges which
dynamic characteristics are different from ordinary structures(Yuan et al., 1995; Yutaka et al., 1993). This
reveals that the current response spectrum combination methods need to be improved for seismic analysis of
suspension bridges.

THE NEW COMBINATION RULE

Consider a linear structure having N degrees of freedom and subjected to the base acceleration v (7). Assume
that the structure has classical modes with @, ,¢, denoting the jth modal frequency and damping ratio
respectively. The well-know equation of motion is (Clough et al., 1975)

[M (D)} +[CL(0)} +[KNv(0)} = IMRT}HY, (1)} (H

where [M], [C] and [K] are the NxN mass, damping and stiffness matrices respectively. {v(¢)}denotes the N
vector of nodal displacements. {I} is the influence vector, containing the values of the nodal displacements
when the base is excited by a unit static translation.

It’s well known that, using a mode-superposition procedure, the nodal displacement in such a system can be
expressed in terms of its modal responses as(Clough et al., 1975)

(D)} = {4} Y1) )

in which Y (¢), {#} are the jth normalised modal response and mode shape vector respectively.

Substituting eq.(2) into eq.(1) and introducing the orthogonality property, we obtain

Y(O+2¢0) () +o]T(1)=-y 5,(2) (3)
(¢}, IMKI} . .
where y , = ————— . is the modal participation factor for mode ; .
© {¢}, IMK43,

Assuming an imaginary sinusoidal excitation (Lin, 1992; Lin et al. 1993) # (¢) = /S, (w)e™ ,which represents
the sinusoidal component with frequency @ and strength,/Svg (w) of the actual ground motion. The

substitution of ¥ () into eq.(3) gives the steady-state response as

H,@)f5,, @' (@)

in which Sv.g (w) is the power spectral density function of the ground acceleration v (¢). i = J-1. is the

Yj(w,t):-'—}/jﬁj(w) Sﬁg(w)e ==y,

imaginary unit.

H ()= [a)2 -0 +2i /ij], is the frequency response function for mode j .
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Similarly, we can obtain the jth modal responses for each imaginary sinusoidal ground motion with discrete
frequency ---@ _,,---o,--®,,--- respectively. Consequently

V= L o H @) 5, @)™ (5)

= —0

From eq.(5), we have
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According to eq.(2), the total response of node r can be written as

L= 28,1,0= 5 E oy 6, H 0[5 @) @)
and
’vr (t)l B Jngl’glkiz?w/go }/jyp¢jr¢”’ HJ (w" ) HP ((0, )‘JS% ((Ok )JSVg (CU/) COS[(601 -, M+ ¢j (w/ ) - ¢p (wk) 1 (8)

Introducing an assumption that each sinusoidal component is independent. Then, eqs.(6) and (8) can be given
respectively by

H,(@,)
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where o, and o, are the root mean squares of the jth modal response and the total response of node r
under the actual ground acceleration v _(#).

Considering the assumption mentioned above, we can obtain the well-known CQC method easily. On the
other hand, if we consider that each sinusoidal component is properly correlated, and that egs.(6) and (8)
approximately represent the root mean squares of the jth modal response and the total response of node r
under actual ground motion V_(¢), a new combination method can be easily derived as follows:

Because the damping ratios of most structures are very small in general, the structure is strongly selective to
the sinusoidal compcnents of the ground motion(Kuwamura et a/., 1994). Only those sinusoidal components
which frequencies are identical to the natural frequencies of the structure have dominant contribution to
corresponding modal response, the other contributions can be neglected. Hence, eq.(5) may be written
approximately as

i(mjt—g) i(mjl—fzi)
’Svg (@,)e ~-0e an

The substitution of D(w,, ¢ ) = p,o, (Kiureghian, 1981) into eq.(11) results in

V(t)y=-y |H, (@)

) n
D(wj . gj ) ei(wjl—;)

Y ()~
J pj

(12)

in which D(@,, {,) is the ordinate of the mean displacement response spectrum (the ‘design‘ spectrum ) for
mode j . p,is the peak factor for mode ; .

Substituting eq.(12) into eq.(7) yields
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Since eq.(13) can be used to calculate the mean square response of the structure subjected to actual ground
acceleration Vv _(¢) approximately, the mean of the absolute maximum response of the structure can be

obtained from

E[max’v: (t)‘] ~ \/Iﬁuzvl;fjip-k R, R, cos(w, —w,)t, (14)

where v (¢) denotes the total response of node r to actual ground acceleration v, (z). p is the peak factor in
relation to the total response of node r . R, =¢, D(w,,¢,). t, represents the pseudo time which the
maximum response arrives.

For most structures, the ratio A would tend to be near unity. Thus, these ratios in the expression for the

;

mean peak response can be discarded without much loss of accuracy (Kiureghian, 1981). With this
simplification, eq.(14) reduces to

E[maxy; (1] ~ \/Z >R R, cos(w, -@))t, (15)

j=l1k=1 J

DETERMINATION OF IMAGINARY TIME ¢, FOR SUSPENSION BRIDGES

First of all, the characteristics of mode-superposition will be discussed. Using Duhamel's integral, the
displacement, velocity and acceleration — Y (), Y (¢),Y,(¢) for mode j can be calculated from eq.(3). No loss

of general, the displacement response of eq.(3) takes the following form

Y()=F@sin(w,t-¢,) (16)
in which
_}/J —gjajt tos jejT 2 oo Jwge . 2 %
FJ(_;)zw—.g - {[Lvﬁ(r)e; cos(a)jpr)dT] +[ng(r)e‘ sm(a)jbr)d‘r] } (17)
v (e sin(w,t)dr
@, =1g - , 1s the random phase angle.

¥, (r)e” cos(w,7)dr

@ =y1- g’jz @, , is the damped circular frequency.

and the mean square of Y (f) is
or = E[F} ) (18)

From eqs.(16) and (18), it can be observed that the modal response at time 7 is mainly constituted by two
parts, the vibration strength part £ (¢) > 0 which controls the amplitude and the periodic function part which

controls the sign of the response. As a whole, the modal response is nearly a sinusoidal vibration with
frequency o ,,, and mean amplitudea,) .

Thus, the mode superposition has close relationship with the natural periods of the structure. The longer the
periods are, the more probable the superposition near the peak modal responses is. The shorter the periods
are, the more probable the peak responses of higher modes perfectly correlate with that of the long period
modes. For long-span suspension bridges which fundamental period is longer than that of ordinary structures,
the maximum responses of the structure are nearly the superposition of several peak modal responses which
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Fig. 1.  Simulation of mode-superposition

have great contribution to the total responses ( Table 1 and Table 2). Therefore, we can consider that the
peak response takes place when the most important two modes ( assuming mode & and mode / ) have perfect
correlation. Thus, we have

( )t KA (19)
cos(w, —w,)t, =
RR|
Hence
T 27
1, =" or 1 = (20)
.fl)k e 0), a)k - Cl)l

RESPONSE SPECTRUM ANALYSES OF SUSPENSION BRIDGES

To assess the validity of the new response spectrum combination method, a comparison between the results of
time history analysis and the results of response spectrum analysis with spectra generated from the same input
time histories is often used. The ground acceleration used in this study is response spectrum-compatible
ground motion of Shantou Bay Bridge, which peak acceleration is 0.2229g and duration 15 seconds (Fig. 2 ).
The acceleration spectrum is computed from the same input ground motion ( See Fig. 3 ).
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Fig. 2. Simulated earthquake ground motion of Shantou Bay Bridge
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Fig. 3. Acceleration spectrum for generated earthquake of Shantou
Bay Bridge



In order to compare, both the response spectrum method and the time history method are carried out on
SAP-V. And a series of new response spectrum combination methods such as CQC, DSC, ARC, SMAM and
the new method have been used to updated the original response spectrum segment of SAP-V program. On
the other hand, the well-known mode-superposition method is used to do time history analysis.

Shantou Bay Bridge

This is a three-span suspension bridge. It has concrete towers, vertical hangers and a prestressed concrete
box-deck of 452m main span. Its two side spans ( each 154m ) are supported by cable (Fig. 4).

760.0m
1S40m | 452 0m L 154.0m
Y
,,fr’r’rﬂ/ﬂ PWTW e - l "2 "i >
L _r - b

Fig. 4. Model of the Shantou Bay Suspension Bridge

The Table 1 and Fig. 5 give the results from response spectrum analysis and time history analysis, in which the
responses based on CQC method, SMAM method, the new method and time history method are listed for the
first 50 modes. From table 1, we can see that the new method gives a better result than the CQC and SMAM
method. The CQC method significantly underestimates the tower bending moments by 24% while the SMAM

Table 1. Tower Bending Moment of Shantou Bay Bridge
(the first 50 modes in-plane, KN-m)

Mode No.  Frequency Mode-superposition Response Spectrum
o (rad/s) contribution maximum time (s) CQC NEW SMAM
1 1.137 -10940 -15790 9.02 15530 15530 15530
3 1.434 -27200 -31390 489 31520 31520 31520
13 7.889 -103900 -103900 549 104300 104300 104300
combination values -146200 549 110800 152400 158800
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Fig. 5. Longitudinal seismic responses for the tower of Shantou Bay
Bridge(the first SO modes in-plane)



method yields an overestimation by 10%. Across the tower as a whole, it is parent that the four curves from
the four methods discussed here have the similar trend. The new method values are very close to time history
values elsewhere. However, the CQC and SMAM methods yield grossly discrepancy.

Tiger Gate Bridge

The Tiger Gate Bridge has a main span of 888m. The side spans are supported on piers( Fig. 6). The towers

are of concrete, the deck a steel box and the hangers vertical.
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Fig. 6. Model of the Tiger Gate Suspension Bridge
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The tower responses of Tiger Gate Bridge abstracted from time history and spectrum analyses for the first
150 modes are given in table 2 and Fig. 7. In the table and figure described above, three response spectrum
methods, that is CQC, SMAM and the new method, are compared with the time history method.

Table 2. Tower Bending Moment of Tiger Gate Bridge
(the first 150 modes in-plane, KN-m)

Mode No. Frequency Mode-superposition Response Spectrum
o (rad/s) contribution maximum time(s) CQC NEW  SMAM
6 2.941 48710 94840 5.96 -91340 91340 -91340
9 4.598 12120 19480 5.74 -19410  -19410 -19410
11 5.026 250200 252600 5.57 -253300 -253300 -253300
27 17.02 86320 87900 5.52 -88810 -88810 -88810
combination values 402100 5.53 276600 390500 478300
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Table 2 tells us that the peak tower bending moment from the new method agrees well with that from time
history analysis whereas the CQC value is smaller than time history value by 31% and the SMAM value is
greater than time history value by 19%. From Fig. 7 which gives the longitudinal moments and displacements
for the whole tower, we also can see that the present new method is the best one among the three response
spectrum methods.

CONCLUSIONS

A new response spectrum combination method has been developed in this paper and applied to seismic
analyses of two domestic suspension bridges — Shantou Bay Bridge and Tiger Gate Bridge. The comparison
among the new method , CQC method, SMAM method and time history method shows that the results for
present new method is in agreement with that abstracted from time history method and the discrepancy
between them is less than 10%. It also shows that the CQC method underestimates the responses by 25~35%
while the SMAM method overestimates the tower responses by 10~20%. From the discussion above, it can
be concluded that the present new method can give better results which are satisfactory for suspension
bridges. Additionally, to ensure the accuracy of the results, sufficient number of modes should be used for
response spectrum analysis of suspension bridges.
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