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ABSTRACT

Reinforced concrete columns subjected to shear and high axial forces typically fail due to crush of concrete
after flexural yielding. Many of studies on the evaluation of ductility of these columns have been performed
by various researchers. Most of them were statistical studies based on experimental results, but an
appropriate design equation for practical use has not yet been proposed. Some of the researchers carried out
a theoretical investigation assuming a certain limit of either compressive or tensile strain at the critical
section, but the correlations between theoretical and experimental results were inadequate, and they did not
describe ductility of members but only that of the critical sections.

This paper describes the theoretical deformation capacity of columns under monotonically increasing
loading or cyclic loading, design charts and equations for the deformation capacity of columns are presented.
The results were compared to experimental results, and an excellent agreement was achieved.
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INTRODUCTION

The deformation capacity is one of the most important factors in evaluating the seismic performance of
structural members. However, a reasonable definition has not yet been proposed. The deformation at the
deterioration in strength of 80% of the ultimate is often taken as the deformation capacity in the
experimental results, but the reason for this is not clear physically. Some researchers discussed a critical
strain in the extreme compressive concrete fiber or a critical tension strain in steel bars at the critical section
(Suzuki et al., 1988, Koyanagi et al., 1988). However, the relation between the capacity at the sections and
that in the members was not explained. The authors, based on the experimental results of columns, showed
that a critical point in the vertical stretching of the tension side in the hinge region existed when columns
were subjected to monotonically increasing lateral load, and that the mechanism of energy absorption in a
whole column changed dramatically at this critical point (Hiraishi ef al., 1990a). This point is referred to as
the stable limit under monotonically increasing loading. The drift angle of columns at this stable limit can be
calculated based on the strains and curvature at the critical section. The validity of the calculation method
has been examined (Hiraishi ez al., 1990b and Inai et al., 1992).



During cyclic lateral loading with a deformation amplitude, the edge zone at the critical section of columns
may be subjected to inelastic compressive strains or tensile strains at the peak deformation, but the central
zone at the critical section may still be in the elastic state and sustain most of the axial load. When the
deformation amplitude exceeds a certain magnitude, the central zone cannot remain elastic any longer. This
results in an accumulative axial shortening in the columns due to the hysteresis characteristics of the
concrete itself, and the lateral load carrying capacity successively deteriorates at each cycle in case that the
stress versus strain curve of concrete has a descending slope after the maximum strength. This means that
this deformation amplitude in cyclic loading which causes inelastic stain over a whole critical section is also
the deformation capacity of columns (Hiraishi ef al., 1993). As a result, the deformation capacity when
subjected to cyclic loading is given by the smaller deformation of the two deformations: one defined by the
stable limit and the other defined by the hysteresis behavior of concrete under cyclic loading. In this paper,
design charts and equations for deformation capacity derived from the theoretical results mentioned above
are presented, and an excellent correlation between the equation and experimental results is shown.

DEFORMATION CAPACITY DEFINED BY MONOTONICALLY INCREASING LOADING

The drift angle of columns at the stable limit is calculated based on the strains and curvature at the critical
section. The strains and curvature at the stable limit under the assumption of the perfect elasto-plastic
relation for steel is derived as follows (see Fig. 1 and Fig. 2). This solution is shown in Suzuki ef al., 1988
and Koyanagi ef al., 1988. The solution taking account of strain hardening in both tension and compression
steel bars is shown in Hiraishi ef al., 1990a.

The maximum strain in tensile steel bars at the stable limit:

&o,.max = (53— 81)/(S1+ 82)- &c,cr (1)
The curvature at the stable limit:
g5 = (S2+83)/(S1+52) &, cr/ (dh- D) 2)
The ratio of the depth of neutral axis at the stable limit to the depth of column:
X = (S14 82)/(S2+ 83)-da 3)

where, $1, Sz, and S are the areas shown in Fig. 2,
&.cr is the concrete strain in the extreme compressive fiber at the stable limit as shown in Fig. 2, and
d is a ratio of the distance from the extreme compressive fiber to the tensile steel bars to the column depth.

The drift angle of columns with a shear-span ratio of about 2 is represented by the rotation angle of the
hinge region, and the rotation of the hinge region is approximately given by multiplying the curvature at the
critical section by the depth of the column, after the hinge region is fully developed (Hiraishi ez al., 1990b).
Therefore the drift angle of columns at the stable limit is given by Eq. (4).

Rse = ¢-D C))
where, Rs. is the drift angle of columns at the stable limit.
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Fig. 1. Symmetrical section. Fig. 2. Assumed stress-strain relation for concrete

and axial stress.



DEFORMATION CAPACITY DEFINED BY HYSTERESIS BEHAVIOR OF CONCRETE
UNDER CYCLIC LOADING

The deformation capacity is also defined by cyclic loading. This is easily understood by considering the
hysteresis characteristic of stress versus strain relations of concrete. Namely, on unloading and reloading in
large inelastic strain range, stress of concrete is very small or negligible if it is compared to that at the same
strain on the skeleton curve. Therefore, once a whole critical section of columns experiences large inelastic
strain in a cyclic loading, the following cyclic loading inevitably forces larger compressive strain in order to
sustain the axial load. As a result, the moment resistance of the section decreases and axial shortening starts
to occur.

As mentioned above, at least some part of the critical section should be elastic in the cyclic loading, to
prevent the axial shortening or cyclic moment deterioration. Therefore, in order to define the deformation
capacity under cyclic loading, this condition should be examined at each loading step. However, in the
following discussion, it is assumed that while the section is stable after flexural yielding in cyclic loading at a
certain deformation amplitude, the inelastic region develops at just both edges of the critical section at both
positive and negative peak deformations. On the basis of this assumption, the deformation capacity is
obtained by examining the axial load carrying capacity of the critical section at zero deformation, in which
inelastic regions have developed at both edges depending on the peak curvature and axial force considered.

DESIGN CHART OF DEFORMATION CAPACITY

Design Chart

Figures 3 and 4 show a core cross section considered and the simplified model of stress versus strain curve
of concrete used in the following examples. In Fig. 4, & is the strain at the maximum strength of confined
concrete, fc' is the maximum strength of confined concrete, and « is a descending slope of confined

concrete. The cover concrete is neglected because large deformations are considered. Figure 5 shows the
relation between the curvature at the stable limit and axial stress ratio; N / (0'D' f'), where N is the axial

force. Figure 6 shows the stress and strain profiles at the two peak curvatures and zero curvature, at the
deformation capacity defined by hysteresis behavior of concrete during cyclic loading. The sum of axial
stress is the same at these three curvatures, and it is the axial force defining this deformation capacity. The
calculated relation between this deformation capacity and axial stress ratio is shown in Fig. 7. Figure 8
shows both results. As seen in Fig. 8, the deformation capacity defined by hysteresis behavior of concrete is
dominant.
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Fig. 3. Core section. Fig. 4. Simplified stress-strain relation of core concrete.
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Fig. 5. Deformation capacity defined
by stable limit.
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Fig. 7. Deformation capacity defined by
hysteresis behavior of concrete.

omparison Between Fiber Model Analysi

The results mentioned above are examined in Fig. 9. The stress versus strain curve of core concrete with a
constant descending slope of 0.1 of & is used in the fiber model analysis. There are a couple of fiber model
analyses with a different axial stress ratio under the same curvature amplitude for cyclic loading: one is
judged to be a little greater than the axial stress ratio corresponding deformation capacity and the other is a
little less. These results are shown at four different curvatures. All the results of the fiber model analyses
with a little smaller axial stress ratio show stable moment versus curvature relations, while those with a little
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Fig. 6. Strains and stresses at peak and zero
curvatures.
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Fig. 8. Deformation capacity of columns
under cyclic loading.

nd Design Chart

greater ratio show moment deterioration under cyclic loading.

DESIGN EQUATION OF DEFORMATION CAPACITY

Equations 5 and 6 approximately represent the relations with @ =0.2 and & =0.4% in Fig. 8 when the drift

angle is represented as R = ¢D".

The deformation capacity of columns under monotonically increasing loading:
Ru=(1-n)/24 for Ru<0.03, Ru=(1-27)/14 for 003 < Ru < 0.06



The deformation capacity of columns under cyclic loading:
Ru=(1-2m)/14 for Ru = 0.06 6)
The value of 0.2 of a corresponds to that of the core concrete of columns with the minimum lateral
reinforcement (Matsuura ef al., 1992). Figure 10 shows the comparison between these equations and the
deformation capacities of the experimental results which are assumed to be the deformation at the
deterioration in strength of 95% of the ultimate moment. Also the axial stress ratio; # is modified as the
following Eqs. (7) and (8), by considering the effect of longitudinal steel bars in the center of the cross
section, and £' is estimated by the equation proposed by Nakatsuka ef al., 1989.
n=(N-Na)/ (D' f') )
Ni=a-o/2 ®)
where, N is the axial force of columns, @ is the amount of longitudinal steel bars at the center of the cross
section of column, and o5 is yield stress of the steel bars.
It is found that the proposed design equations gave a lower boundary of deformation capacity as expected.
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Fig. 9. Examples of fiber model analysis related to deformation capacity.



i ] i
n<1.0-24R (R <0.03)

0.8 J\A ;

0.6 e

0.4

s
/L_
L

0.2 \i’: ¢ (:)

nfs o.5jm (R < 0.06)
0.0 0.02 0.04 0.06 0.08
Ru

: Constant axial force, Cyclic loading, Flexural crush failure

: Constant axial force, Cyclic loading, Little deterioration

: Varying axial force, Cyclic loading, Flexural crush failure
or Constant axial force, Monotonic loading, Flexural crush failure

: Varying axial force, Cyclic loading, Little deterioration
or Constant axial force, Monotonic loading, Little deterioration

: Constant axial force, Cyclic loading, Flexural crush failure with vertical
cracks

o > »Ooe

Fig. 10. Experimental relationships between axial stress ratio and deformation capacity of columns
and those proposed for seismic design.

CONCLUSIONS

The following conclusions were drawn from this study on deformation capacity of columns subjected to
high axial stress.

1)Under cyclic loading, the hysteresis behavior of concrete has a great influence on ductility. The
deformation capacity by this is proposed in this paper by considering three deformation stages of the two
peak deformations and zero deformation. The smaller of the two being defined by hysteresis behavior of
concrete and the stable limit govern the deformation capacity of columns subjected to cyclic loading.

2) The two deformation capacities mentioned above are shown in the charts. Mostly, the deformation
capacity defined by hysteresis behavior of concrete is dominant. The proposed chart of deformation capacity
shows excellent correlations to fiber model analyses.

3) Finally, this paper proposes the simple structural design equations of the deformation capacity of columns
based on theoretical results, and shows the comparison between these and experimental results. The
proposed equations provide an excellent lower boundary of the experimental results.
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