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ABSTRACT

This paper presents a macroscopic analysis model which is able to simulate not only flexural behavior
but also shear behavior of reinforced concrete columns subjected to high or fluctuating axial load as
well as horizontal load. Then, high strength reinforced concrete column specimens tested in the past
were analyzed using the proposed model and the caluculated results were compared with the test results
to investigate validity of the proposed model. Furthermore, parametric study was conducted using the
proposed model and effect of such variable parameters as magnitude of axial force on strength and
deformation capabilities of reinforced concrete columns was investigated.
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INTRODUCTION

In recent years, technology for designing and constructing high-rise reinforced concrete(hereafter, refers
to as “R/C”) buildings has been actively developed. When buildings are under eathquake ground mo-
tion, high or fluctuating axial force may occur in columns at the lower stories or at the corner. For
this reason, shear deformation, which is normally negligible, grows significantly in addition to flexural
deformation and this leads to complex behavior. Therefore, it is an urgent business to develop a reliable
macroscopic model for R/C columns, which can take shear defromation and mechanical properties of
high strength materials into consideration, to investigate earthquake responses of such buildings. The
authors(Lejano et al, 1995) conducted the horizontal cyclic loading test on R/C column specimens
under high or fluctuating axial load. Horizontal deformation of column spcimen was successfully de-
composed into the flexural, shear and other components on the basis of measured deformations and
strains. In the present study, models for flexural and shear behaviors of R/C columns shall be for-
mulated independently and macroscopic model, which couples both models in series, is presented. In
the next place, monotonic and cyclic horizontal loading analyses on the R/C column specimens are
conducted using the proposed model and validity of the model is studied by comparing the calculated
results with the test results. Furthermore, parametric analyses with variable parameters such as mag-
nitude of axial force, amount of shear reinforcement and concrete strength are conducted and effect of
these parameters on strength and deformation capabilities of R/C columns is investigated.
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ANALYSIS MODEL FOR REINFORCED CONCRETE COLUMN

The R/C column, which is subjected to the horizontal and axial forces simultaneously as shown in
Fig. 1, can be modeled as the system which couples the flexural spring expressing flexural behavior
under bending moment(M) and axial force(N) with the shear spring expressing shear behavior under
shearing force(Q) and axial force(N) in series. In this study, the former shall be referred to as “the
flexure model”, the latter “the shear model” and the combined system “the coupled model”.

Flexure Model

It is known that the flexural behaviors of R/C members can be simulated fairely well by the fiber
method even under high or fluctuating axial force (Kanda et al., 1988, Ono et al., 1989). The authors et
al.(Kanda et al., 1988) developed the fiber analysis method. It was formulated on the basis of the mod-
ified Endochronic theory (Tanaka et al., 1994) as the constitutive law for concrete, in which the original
Endochronic theory(Bazant et al., 1980) was extended so that it could be applied to high strength con-
crete, and the Ciampi’s model(Ciampi et al., 1982) for expressing cyclic stress-strain hysteresis relation
of reinforcement. Furthermore, the method was applied to the analysis of felxure behaviors on the R/C
column specimens under high or fluctuating axial force and validity of the method was investigated (Ono
et al., 1989). In this study, the fiber method stated in the above shall be adopted as the flexure model.

Shear Model

With reference to the past test results(Lejano et al. 1995), it is assumed that shear deformation of
R/C columns is almost identical independent of positions along the member axis. Therefore, shear
behavior of the R/C column can be simulated by solving the constitutive equation for R/C element,
which is representative of the R/C column, under the combined state of axial and shear stresses. That
is, axial and shear deformations of R/C column can be evaluated by multiplying axial and shear strain
responses for the R/C element by an effective length of R/C column.

Constitutive law for the R/C element can be formulated on the basis of the following assumptions,
equiliburium condition and compatibility condition;

(1) Reinforcement such as main bars and shear reinforcing bars is uniformly distributed over the
concrete element, and thus the compatibility between steel strain {€,} and concrete strain {e.} is
satisfied; {e} = {e.} = {es}. {€} stands for the strain vector of the R/C element.

(2) Cracks are allowed to occur in the multiple directions. Thus, the so-called “multi-directional
smeared crack concept” (De Borst et al., 1985, Rots, 1986) is adopted.

(3) The axis of principal stresses in concrete including cracks coincides with that of principal strains.
This conditon of coaxiality, which allows the principal axis to rotate, leads to the so-called “ro-
tating crack concept” (Rots, 1986).

(4) Average strain {e.} in concrete including cracks can be defined as the sum of strain {e.} in the
solid part and strain {e..} in the cracking part. Hereafter, {¢,,} shall be referred as the solid
strain and {e.} as the crack strain.

(5) The tension stiffening and the shear transfer shall be considered to model behaviors in the cracking
part. \

(6) The modified Endochronic theory and the Ciampi’s model shall be adopted as the constitutive
laws for solid concrete and reinforcement as in the flexure model, respectively.
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Fig. 1 Modeling concept of R/C column
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Fig. 2 Modeling of R/C column for shear analysis

The model proposed for simulating shear behavior of the R/C column is schematically shown in Fig.
2. The equilibrium condition of R/C element leads to the following relation;

Afy = A0+ PsAOsp, Afy = A0cy + PuA0sy, AUgy = ATeqy (1)

where, Af;, Af, and Av,, indicate the applied normal stress increments in the X and Y directions
and the applied shear stress increment, Ao, Ao, and AT, the normal stress increments in the X
and Y directions and the shear stress increment in concrete, Ao, and Ad,, the stress increments in
reinforcement in the X and Y directions, and p, and p,, the steel ratios in the X and Y directions. In
the prsent specific case of R/C column, Af, = N/A, Af, = 0 and Av,y = 1.5Q /A provided that the
shear stress distribution across the depth of R/C column is parabolic. Where N and () indicate the
applied axial and shearing forces and A the cross sectional area of R/C column.

The stiffnesses of concrete and steel elements can be coupled in parallel on the basis of the assumption
of (1). In the present paper, only formulation of constitutive law for the concrete element shall be
described. According to the Endochronic theory, the constitutive law for concrete before cracking can

be written as follows;
{Aoco} +{A0¢,} = [Peoayl{AEco} (2)

where {Acy}, {Ac” } and {Ae,,} indicate the vectors of stress increment, inelastic stress increment
and strain increment, and [D,,] the material stiffness matrix in the X-Y coordinate system.

In the next place, if crack occurs, the average strain increment {Ae.} in concrete including crack can
be decomposed into the solid strain increment {Ae,,} and the crack strain increment {Ae.} on the

basis of the assumption of (4) as;
{ec} = {eco} + {Eer} (3)

The cracking and stress states in the concrete element can be schematically shown in Fig. 3. The
directions of 1 and 2 mean the principal axes. At initial cracking, one of these principal axes coincides
with the cracking direction. However, following the subsequent loading, the principal axis rotates and
thus it deviates from the cracking direction. The rotation of principal axes result in creation of new
crack whose direction is different from the initial one. The total crack strain increment {Ae. } in the
concete element including multi-directional cracks can be defined as the sum of strain increments in the
cracking parts of each direction as follows;

{Aes} = T[NkJ{Aeer i} (4)

a) Smeared crack in b) Strain representation c¢) Smeared crack in

single direction two directions

Fig. 3 Multi-directional smeared crack concept



where {Aeq} = {Aeerz, A€ery, AYerzy )}’ indicates the total crack increment,

{Aegr} = {Aecrarg, Avg2 £ }T the crack strain increment in the k-th crack, [N] the transformation
matrix, k(= 1,2,- -, ner) the crack number, n cr the number of cracking directions. Similarly, the local
stress increment corresponding to the crack strain increment in the k-th cracking part can be written

as follows;
{ASea} = [N]{A0x} (5)

where {ASe i} = {AScr22k, Aﬁ'c,-gl‘k}T indicates the local stress increment in the k-th cracking part,
{A0e} = {ACcrz, ATcry, DTeray }T the total stress increment in the cracking part with respect to the
X-Y coordinate system.

The constitutive equation for the k-th cracking part can be written as follows;

br 9 ] (6)

{AScr,k} + {ASé’T'k} = [[)c‘r‘,k]{A(—)‘CT,k}a [I)cr,k] =
0 Dy

where {ASY ,} = {AShas 4, ASiar )" indicates the inelastic crack stress increment, and Dy and Dy
the tension stiffness and the shear stiffness in the cracking part.

Since the material stiffnesses of the solid and cracking parts in concrete are coupled in series from
the assumption of (4), the total stress increment {Ac,} in concrete including crack(s), the total stress
increment {Ao,,} in the solid part and the total stress increment {Aoc-} in the cracking part satisfy
the following equiliburium condition;

{Ac.} = {A0,} = {Aos} (7)

Finally, substituting Egs.(3) to (7) into Eq.(2), the constitutive equation for concrete element including
cracks can be derived as follows;

{Aac} = ([[)coxy]_l + E[Nk][l)cr,k]_l[Nk‘]T)-l({AEC} - {Ascp}) (8)

where {A¢e,,} is regarded as the inelastic strain increment corresponding to the inelastic stress increment
{Ac”_} in the solid part and the inelastic stress increment {ASg ;} in the cracking part, and this can
be defined as follows;

{Acpt = [I)cozy]_l{A”go} + E[Nk][l)cr,k]‘l{ASgr,k} (9)
Furthermore, the total crack strain increment {Ae..} can be obtained by the following equation.
{Acer} = E[Nk][])cr,k]—l[Nk]T{Aoc} (10)

Now, let us discuss about modeling of the tension stiffness /); and the shear stiffness /)j; in the
cracking part defined in Eq.(6). First, the tension stiffness is intended to express the tension softening
of concrete itself and the tension stiffening due to the bond action between concrete and reinforcement.
In the present study, the tension stiffness I; shall be evaluated on the basis of the tensile stress—strain
hysteresis model, which was constructed by modifying the model proposed by Shirai(Shirai, 1978). as
shown in Fig. 4. Consequently, I); can be defined in terms of the tangential modulus of solid concrete
E, and the tangential stiffness /7 on the hysteresis curve assumed in Fig. 4 as follows;

Dr=E, - E/(FF,— F) (11)
In the next place, the shear stiffness (i, of cracked concrete can be defined by applying the concept of

rotating crack as follows;
Gc = (Oc:t - Ucy)/2(5:c - Ey) (12)

Consequently, the shear stiffness in the cracking part /);; can be defined in terms of the shear stiffness
of solid concrete (7., and the shear stiffness of cracked concrete (7, as follows;

Dip = G- Gof (Glog — Gy (13)
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Fig. 4 Tension stiffning of cracked concrete  Fig. 5 Illustration of two-spring system

Coupled Model

The flexure and shear models were formulated independently in the above, and these models shall
be coupled in series in this section. For simplicity, let us consider 2-spring system as shown in Fig. 5
which modeled the R/C column. The spring of No.1 expresses the flexural stiffness K'r and the spring
of No.2 the shear stiffness Kg. Since these springs are coupled in series, the following equilibrium of
forces and compatibility of deformations are satisfied.

AP =APr=APs, Ab=Abp+ Abg (14)

where AP, APr and A Pg indicate the incremental forces in the total system, the flexural spring and
the shear spring, A#, Aép and Abg the corresponding deformation increments. The internal force
increments in each spring can be related to the deformation increments by the following equation.

APp+ APE = KplAép, APs + AP = KsAbs (15)

where A P{ and A P§ indicate the unbalanced force increments due to nonlinearities of the flexural and
shear springs. Substituting Eq.(15) into Eq.(14), the stiffness equation for the spring system can be
derived as follows;

AP = KAS — AP" K = (Kg' + Kg')™! AP" = K(KF'APp + K5'APg (16)

Up to now, the macroscopic model has been formulated by assuming that the resistance mechanisms
for flexure and shear can be dealt with indepentently. However, there must be an interaction between
them. In this study, it is assumed that cross sectional area of the R/C column, which is effective for
the shear transfer, is reduced due to the existence of flexural cracks. Thus, the following “interaction
factor 2 ” shall be introduced to evaluate an effective area A, = QA.

Q=(V-V,)/V (17)

where V indicates the total volume of R/C column and V. the sum of volumes of fiber elements in
which flexural cracks are open.

ANALYSIS RESULTS

Verification of Proposed Model

In order to study validity of the proposed model, the R/C column specimens tested in the past are
analyzed. The detail of bar arrangement and dimension of specimens are shown in Fig. 6 and the
structural parameters are listed in Table 1(Lejano, 1995). C-2 specimen was tested under the cyclic
horizontal loading as well as high constant axial force, and C-3 specimen was tested under the cyclic hor-
izontal loading as well as fluctuating axial force. The shearing force-horizontal displacement response
calculated under the monotonic horizontal load for C-2 specimen is compared with the test result in
Fig. 7. The coupled model A in the figure indicates the result calculated by taking the interaction be-



Table 1 Structural properties of specimens

Main Shear Yield Concrete . .
Series Peinf.  Reinf. Strength Strength __APplied Axial Force
Ratio  Ratio fy fc 0
Pg%)  Ps(0)  (kgticd)  (kterh) 1 YPC N N/Nu(w)
c-2 3.94 0.89 (%01’33?) 404  Const. 2446 58
. (24- (4-D16 3790 -108.0 b) ‘a)
C-3 D13) @52) (D6 419 Fue. "7 -70~60

*a)Nu=0.85BD*fc+As*fy (ultimate compressive force)

*b)Nu=As*fy (ultimate tensileforce) where As=PsBD

tween flexure and shear into consideration, and the coupled model B indicates the result calculated by
taking no interaction into consideration. The calculated result by the model A agrees well with the test
result. Fig. 8(a) shows the comparison between the calculated and observed shearing force—flexural de-
formation responses and Fig. 8(b) shows the comparison between the calculated and observed shearing
force-shear deformation responses. The deformation components calculated by the model A agree well
with the test results. On the other hand, the model B provides the different responses of deformation
components from the test results. Figs. 9 and 10 show the comparisons between the calculated and
observed hysteresis curves for C-2 and C-3 specimens. It can be said that the predicted results by the
proposed model with interaction can simulate overall behaviors with practically reasonable accuracy,
although the predicted hysteresis responses at large deformation level are slightly different from the test

results.
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Parametric Analyses

In this section, parametric analyses by the proposed model shall be conducted using C-2 as the refer-
ence specimen. The parameters to be studied are (1) magnitude of axial force, (2) amount of shear
reinforcement and (3) concrete strength. Fig. 11 shows the comparison between the calculated and
observed shearing force-horizontal deformation responses when the magnitude of applied axial force is
varied. Note that N.=22.6tf indicates the magnitude of axial force applied in the test. Fig. 12(a)
compares the calculated shearing force-flexural deformation responses and Fig. 12(b) the calculated
shearing force-shear deformation responses. It is seen that the axial force has significant influence on
strength, ductility and fracture mode of R/C columns. Next, the analysis was conducted on the R/C
column in which amount of shear reinforcement was varied. The results indicated that lesser shear re-
inforcement caused brittle behaviors and on the other hand with more reinforcement the shear strength
was increased and also the ductility was improved. Finally, effect of concrete strength on behaviors of
R/C columns was studied. It was found that concrete stength had significant influence on the resistance
mechanism of R/C columns.

CONCLUSIONS

The following findings were obtained through the numerical studies on R/C columns by the proposed
model.

(1) The proposed model can simulate load-deformation responses of R/C columns under high or
fluctuating axial force as well as horizontal cyclic load with reasonable accuracy.

(2) The interaction between flexure and shear must be considered to simulate both behaviors adeqately
and the concept of interaction factor proposed is effective.

(3) Magnitude of applied axial force has significant influence on strength, ductility and fracture mode
of R/C columns.

(4) Although there is the upper limit, increase in shear reinforcement increases strength and ductility
of R/C columns.

(5) Making concrete strength higher, increase in strength of R/C column is expected. However,
amount of shear reinforcement must be increased at the same time to guarantee flexural fracture
mode with sufficient ductility.
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