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ABSTRACT

A subdomain approach is employed to analyse the seismic response of a sheet pile wall. The method
takes advantage of recent developments in the field of dynamic soil-structure interaction and offers a
rigorous alternative to a simplified pseudo-static analysis, without being too demanding on the compu-
tational point of view. It is used to propose design criteria for sheet pile walls in seismic regions.
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PROBLEM OUTLINE

The twodimensional (in-plane) seismic response of a sheet pile of height L in a horizontally layered soil
medium on rigid bedrock is envisaged (figure 1). The origin of the cartesian coordinate system (z,y)
is placed on the bedrock below the sheet pile. The top of the sheet pile is located at a height H; above
the bedrock. The height of the soil at the right and left hand side equals H, and Hj3 respectively.

The problem domain is subdivided into three subdomains. The domain €, of the generalized sheet pile
consists of the sheet pile and the (layered) soil below, extending to the bedrock. The sheet pile material
is isotropic and linear elastic. The sheet pile can be tied back by an anchor. The soil domains are
horizontally stratified and denoted by 2,, where the subscript m is equal to 2 or 3 for the soil domain
at the right and left hand side of the sheet pile. Each layer consists of a homogeneous linear elastic
material, while hysteretic material damping in the soil is accounted for. The restriction to linear elastic
materials allows to rely on the superposition principle as required for a frequency domain analysis.

The free surface I'y is horizontal and defined as I'y = Tg; U Ty U I'gs with T'o N 99y = Ty and
IoN O, = Tlom- The rigid bedrock T'y is also horizontal and defined as I'y = Ty U ey U Dig
with Ty, N 9Q; = T'y; and I'y N 00, = Tey. Both soil domains are bounded by infinite boundaries on
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Foo = F2Ulee3 WithT'oNOQ; = 0 and T'ooNOQy, = Toom. The restriction to horizontally layered soil
domains, bounded by a horizontal free surface and rigid bedrock enables an integral transformation of
the horizontal coordinate z to the horizontal wave number domain k, which facilitates the development
of radiating boundary conditions on I's,,. However, the restriction to a horizontal rigid bedrock limits
the seismic loading to a vertical incident P-wave or SV-wave.

A virtual work condition will be used to impose traction boundary conditions at the interface ¥ between
the sheet pile and the soil domains. This interface is defined as ¥ = X, U X3 with N3N = ¥ and
Y NN, = Xis,. Perfect contact between the sheet pile and the soil is assumed on the interface X.
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Fig. 1: Dynamic sheet pile soil interaction

DECOMPOSITION OF THE DISPLACEMENT VECTORS

The displacement vector u, in the domain }; of the generalized sheet pile is written as the sum of the
rigid base motion a and a modal decomposition on the basis of N; eigenvectors ®; (j = 1, N;) of the
generalized sheet pile, clamped at its base:

u, = a+@1a1 (1)

The columns of the matrix ®; are equal to the the eigenvectors ®y;,1.e. ®; = [®y; D13 --- yp,], while
the modal participation factors ay; are collected in a vector a; = {3 @19 -+ gy, }E.

Similarly, a decomposition of the problem into simpler subproblems allows to write the soil displacement
vector U, in the domain ,, as the following superposition (Clouteau, 1990; Aubry and Clouteau, 1992):

Ugn = Ugym + Wi + Udom + Qmam (2)

U, 1s an elastodynamic field in Q,,, radiated by the rigid body motion of the sheet pile. It satisfies
Uy, = a on Yy, and Sommerfeld’s radiation conditions on I'eom. Wim is the (one-dimensional) incident
wave field in 2,,, due to a vertical incident P-wave or SV-wave. ugo,, is the locally diffracted elasto-
dynamic field in §2,,, satisfying u4om = —U;n, on Xy, and Sommerfeld’s radiation conditions on I'gop,.
The scattered wave field in )., is expanded on the basis of the N,, surface wave modes ®,,; ( = 1, N,,)
of the multilayered soil on rigid bedrock. The columns of the matrix ®,, are equal to the eigenvectors
D, i.e. @, = [®n1 Pz - Prun,, |, while the modal participation factors an,; are collected in a vector

Oy, = {aml am2 XNy, }T-

WEAK VARIATIONAL FORMULATION

On the interface X, perfect contact between the sheet pile and the soil domains 2,, is assumed:

U = Uy On % (3)



A weak variational approach is used to impose the traction boundary condition on the interface :
< tp(up) + tsz(usz) + ts3(u33)7v >y = 0 Vv (4)

v are the weighting functions and t(u) = o(u)n are the tractions on a boundary with unit outward
normal n. < a,b >z is the integral [, aT’bd¥ defined on the interface ¥ for two vectors a and b.
Similarly, (a,b)q will be used in the following to denote the integral f, a"bdf in the domain Q.

The decompositions (1) and (2) for the displacements u, and u,y,, can be introduced in conditions (3)
and (4). Accounting for the identities u,, = a and u;, + 4om = 0 on I, the displacement continuity
(3) reduces to:

@1&1 = @mam on X% (5)
Based on similar arguments, the virtual work statement (4) becomes:

< V,tp(‘ﬁlal) >y 4 < V,tg(@lal) >Th2 + < V,ts3(Q1a1) >%1s
= —<v,t(a) >x — <V, teo(Un) >5, — < V,tea(uin) >5, — < V,to(ug) >x,
- < V,tsa(uas) > — < V,tsa(uie,) > — < V,tss(udos) >%1s (6)

The terms on the left hand side are the impedances of the sheet pile and both soil domains, while the
terms on the right hand side can be considered as the virtual work originating from external forces. In
the following sections, general expressions for < v,t,(u,) >5 and < v, ts,(Usm) >5,,, will be derived.

RITZ VARIATIONAL APPROACH FOR THE SHEET PILE

In this section, the boundary term < v,t,(u,) >x, representing the virtual work of external forces on
the generalized sheet pile, will be elaborated. A strong integral formulation for a twodimensional beam
element, accounting for shear deformation and rotational inertia, immediately follows from the partial
differential equations and the boundary conditions. A weak integral formulation can be obtained after
integration by parts on the relevant terms and is equivalent to the following virtual work expression:

<v,t(y) >5 = (e(v),o(up))a, + (v, M), (7)

where a notation has been used which is similar to the one usually employed in continuum mechan-
ics. The term on the left hand side of equation (7) collects the virtual work of the distributed and
concentrated external forces on the sheet pile. It is convenient to define a generalized displacement
vector u, = {u; uy f}7 with u, and u, the axial and transverse displacements and 3 the rotation due
to bending. The first term on the right hand side of equation (7) is the strain energy. € = {e,v«}T is
a generalized strain vector with ¢, the axial strain, v the shear deformation and & the curvature of the
beam. The strains are related to the displacements by:

Z 0 0
€ = 0 £ 1 |u, =Ly, (8)
0o 0 £

The constitutive equation relates the generalized stress vector ¢ = {N T M}T, with N the normal force,
T the shear force and M the bending moment to the generalized strain vector e:

o = De (9)

Herein D = D{EA kGA EI} is a diagonal matrix with constitutive coefficients. E is the Young
modulus, G the shear modulus, A the cross-sectional area, I the moment of inertia and k a correction
factor to account for the cross-sectional area effective in shear. The second term on the right hand side
of equation (7) denotes the virtual work of the inertia forces, where M = D{pA pA pI}. Equation



(7) is the basis for a mixed finite element formulation based on a discretization of all displacement
components of u, (Bathe, 1982).

In a weak Galerkin formulation, both the sheet pile displacement vector u, and the weighting functions
v are decomposed on the basis of sheet pile eigenvectors, according to equation (1) and v = ®,a,
respectively. The vector «, contains the virtual modal participation factors. Introducing definition
(8) of the generalized strain and the constitutive relation (9) and assuming a harmonic variation with
respect to time at a circular frequency w, the weak Galerkin counterpart of the integral expression (7)
becomes:

<v,t(uy) >z = of (L&, DL®)g, a1 — el (8, M®))g, 01 — wial(®;, Ma)g, (10)

It should be noted that the rigid base motion a does not contribute to the strain energy.

A Ritz variational approach with global piecewize linear and cubic shape functions N; introduces the
following approximation on the eigenmodes of the generalized sheet pile:

Ql ~ él = ngl (11)
and results in the following Ritz formulation of the boundary term:
<v,t(u,) >z = ofBTK ® 01 — w2l ®TM 8,04 — w2l ®TM;a (12)

K; = (LN;,DLN,)gq, and M; = (N;, MN,)q, are the sheet pile’s stiffness and consistent mass matrix.
The eigenpairs (w;;, ®1;) are solutions of the generalized eigenvalue problem:

K]q)lj = wijﬁI)lj (13)

If the eigenvectors are orthonormized with respect to the mass matrix, Y M;®, = I and BTK @, = A,
with A = D{w}; w},---wiy, }, the virtual work expression finally becomes:

<v,t(u) >y = of [(A — W)y — wzngla] (14)

RITZ VARIATIONAL APPROACH FOR THE SOIL

In this section, the boundary term < v,ts,(usm) >, representing the virtual work of external forces
on the soil domain €2, along the interface 3, will be elaborated. The dynamic behaviour of the soil can
be described within the frame of elastodynamics. The equilibrium equation of the medium is:

dive + p°b = p°Usm (15)

o is the total stress tensor, p°b the body force and p® the density of the solid skeleton. The natural
boundary conditions on the part 0f),,n of the boundary 99,, of the domain 2,, are:

on—t = 0 on 0w (16)

As the imposed tractions t are only nonzero on the part ¥ of the boundary 9Q,,n, 9Qmn will be replaced
by Y. The small strain tensor ¢® is equal to the symmetric part of the soil displacement gradient. The
constitutive equations can be summarized as follows:

o = 2u°€ + Ntre’l (17)

where p® and A° are the Lamé coefficients and 1 is the unit tensor. In the frequency domain, the
correspondence principle allows to account for hysteretic material damping in the solid skeleton by
using complex Lamé coefficients u** and A**, defined as p** = p°(1 + 2182) and (A\** + 2p°*) = (A° +
2p°)(1 + 2iB;). Herein, i = /=1 is the imaginary unit and 32 and 8% are the hysteretic material
damping ratios for rotational and dilatational deformation respectively.



The strong integral formulation, equivalent to the partial differential equations (15) and the boundary
conditions (16) is:

(v,dive — p°Usm)o,— <Vv,on—t >5 = 0 (18)

The influence of body forces has been neglected. In view of a discretization, it is convenient to replace the
symmetric stress and strain tensors o and € by two vectors. The strain-displacement relation becomes
€ = Lpu,, and the constitutive relation reduces to o = De. After reordering of terms, assuming a
harmonic variation in time and using vector notation, equation (18) becomes:

<v,t>y = —(v,LﬂDLmusm)gm — w2(v, P’Usm )+ < v,DL,us,n >g (19)

A Ritz variational approach with global piecewize linear shape functions is used to approximate the
soil displacements. A Galerkin approximation is obtained if the same displacement functions are used
as weighting functions. If the horizontal coordinate z is transformed to the horizontal wave number k.,
the following discretized system of equations is finally obtained:

f., = [K2A, +ikBn+ Gpn —w*M,]u,, (20)

with k2A,,+ik: B +Grmn = —(Nm, LLDL,, N, )q,.+ < Ny, DL, N,,n >s and M,, = (N, p*°N,,)q,..
Assuming linear interpolation, an expression for the elements of the matrices A,,, B,,, G,, and M,,
and the vector f,, has been presented by several authors (Waas, 1972; Kausel, 1974; Kausel, 1986;
Kausel and Peek, 1982; Tassoulas and Kausel, 1983). It is customary to write C,, = G,, — w?M,,. The
eigenpairs (k;;, ., are solutions of the corresponding eigenvalue problem for the soil:

[k2;Am + ikziBm + Cr] @mj = 0 (21)
or
AZlC,, AZlB, ] { A ®rmij } - )‘"”{ Amj P } 22)

with A,,; = tk;;. In the soil domain §;, Im(k;;) should be negative as waves propagate to the right
(z > 0), while in the soil domain §23, Im(k,;) should be positive as waves propagate to the left (z < 0).

All elements are now present to derive an expression for the term < v, t4,(usn) >x. If the displacement
field u,y, is decomposed on the basis of the eigenmodes ®,,;, the virtual work expression for the boundary
term becomes:
Nm
< v,tsm(usm) >y = Z < V,tsm(Qmj)amj >r (23)
j=1
In a Galerkin formulation, the weighting functions v are decomposed on the basis of sheet pile eigen-
modes, i.e. v = ®,a, where «, contains the virtual modal participation factors. If we use a Ritz
variational approach:

~

®, ~ &, =N,P (24)
the boundary term becomes:
Nm
<V tom(Uem) >x = F Y ol B8] < Np, DLy Ny, >r 8,00, (25)
i=1

where the — and + sign are used in the domain {2; and (5 respectively. Elaborating the integral and
using matrix notation (Tassoulas and Kausel, 1983):

Nm
<V, tsm(usm) >y = + Z afgfll" [Zk:t]Am + Dm] gmjamj (26)
Jj=1



or

<V, tom(Ugm) >z = +al @7 (A, 2. K, +D,®,.]an (27)
where K,, = D{ikyy tky2 --- tken,,}. As we want an expression in terms of u,n, rather than the
unknown participation factors a,,, we can finally write:

<V, tom(Usm) >y = 2ol ®] [An®, K8 + Dn] usm = ol ®R,u,m, (28)

This expression allows us to write the virtual work of the boundary tractions at the interface X for a
general displacement field u,,. The formulation is equivalent to the derivation of a consistent boundary
condition (Waas, 1972).

MATRIX FORMULATION

Expressions (14) and (28) allow to elaborate the virtual work statement (6). After some algebra and
stipulating that the formulation should hold for any set of virtual modal participation factors, the
following system of equations is obtained:

[(A —_ U.J2I) + Qng@] - QTR3@1]Q1
= W'®TM,a+ ®TR,u,; + ®TDou;, + ®TRyuq0; — BT Rauys — BT Dauis — T Rauges  (29)

The solution of this system of equations gives the complex participation factors a; on the eigenmodes
of the generalized sheet pile. Equation (1) allows to recover the displacements of the sheet pile and,
consequently, the member forces. The displacements in the soil domains 2,,, can be calculated as:

Usr, = Uiy + Qm(aaﬁm + Qdom + am) ’D{eXp(—Zkl-]fL')} (30)

where qgm, 0dom, Qm are the complex participation factors on the eigenmodes of the soil for the field
radiated by the rigid body motion of the sheet pile, the locally diffracted field and the scattered wave field
respectively. They follow from the solution of ®,,05 = Ugm, ®riom = Udom and €0, = g,

NUMERICAL EXAMPLE

The seismic response of a sheet pile due to a vertical incident plane harmonic P-wave and SV-wave will
be considered. Referring to the nomenclature introduced in relation to figure 1, the relevant dimensions
are L = 15m, H, = 20m, H; = 20m and Hz = 10m. A sheet pile Arbed PU 20 with a cross
sectional area A = 0.0018 m?/m, inertia I = 0.00043m*/m, Young modulus £ = 2.1 x 10" N/m’
and density p = 7850 kg/m® is embedded in a sand soil with Young modulus E* = 2.983 x 10° N/m?,
Poisson coefficient v* = 1/3 and density p* = 1621.8 kg/m®. Hysteretic material damping in the soil is
represented by 8° = 8; = 5 = 0.05.

The interface ¥ between the soil and the sheet pile is discretized into 20 elements. The first 10 eigen-
modes of the generalized sheet pile are accounted for, leading to a 10 by 10 system of equations (29)
and resulting in the participation factors a; on the generalized sheet pile’s eigenmodes. Postprocess-
ing allows for the calculation of the displacements and member forces in the sheet pile, as well as the
displacement fields in the soil.

As a matter of illustration, figure 2 shows the displacement fields in the soil for a vertical incident plane
harmonic SV-wave at excitation frequencies f; = 2.5Hz, f; = 5.0Hz and f3 = 7.5Hz. It is important
to repeat that only a discretization of the interface ¥ between the sheet pile and the soil is required;
the mesh in figure 2 has been used for postprocessing only. The first resonance frequencies of the soil
domains 2, on rigid bedrock are equal to f1¢* = Cs,/4H,, where C,,, is the shear wave velocity in
the domain Q,,, giving f3°° = 3.28Hz and fI* = 6.56 Hz. It is apparent from figure 2 that wave



a. Frequency 2.5 Hz

b. Frequency 5.0 Hz

c. Frequency 7.5 Hz

Fig. 2: Displacements for a vertical incident plane harmonic SV-wave.

propagation and, consequently, dissipation of energy, only occurs if the excitation frequency is higher
than the first resonance frequency of the layer on rigid bedrock.

Figure 3 shows similar displacement fields for a vertical incident plane harmonic P-wave at excitation
frequencies f; = 5.0Hz, f, = 10.0Hz and f; = 15.0Hz. The first resonance frequencies of the soil
domains 2, on rigid bedrock are equal to f'¢* = Cp,/4H,, where Cpy, is the longitudinal wave velocity
in the domain Q,,, giving f;°° = 6.56 Hz and f}** = 13.125 Hz. Similar observations as in the previous
case can be made.

a. Frequency 5.0 Hz

c. Frequency 15.0 Hz

Fig. 3: Displacements for a vertical incident plane harmonic P-wave.

A more thorough analysis requires calculations for a range of frequencies so that the variation of the
sheet pile’s member forces with varying frequency can be studied. The transient response for an actual
earthquake can be obtained if an FFT algorithm is employed to calculate the inverse transformation
from the frequency to the time domain.

CONCLUSION

Relying on a multidomain approach, the decomposition of the general problem into several simpler
subproblems and the use of modal bases to represent seismic fields emitted at the interfaces, the seismic



response of sheet pile walls has been considered. The resulting formulation is based on a terminology
close to engineering practice and eflicient from a computational point of view. In view of the propo-
sition of design rules for sheet pile walls in seismic regions within the frame of part 5 (”Foundations,
retaining structures and geotechnical aspects”) of Eurocode 8 (”Structures in seismic regions - design”),
a parameter study is presently undertaken. The influence of several parameters such as the type of
incident wave, the frequency content of the seismic loading, local soil conditions, material damping,
the retaining height and the presence of a tieback are investigated. Alternative formulations, based on
analytical solutions rather than a Rayleigh-Ritz discretization will be envisaged in the near future.
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