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ABSTRACT

The paper is concerned with the properties of a longitudinal (compression) harmonic wave propagating
in a 3D continuum the properties of which are burdened by random deviations from normal values,
considered constant. Thanks to random perturbations the initially isotropic environment acquires
a slightly anisotropic character. Thanks to the hypothesis of high correlation of random parts of
the individual components of elasticity tensor on local scale and the low correlation in space, the
continuum may be considered as locally isotropic with random-variable Lamé elasticity parameters.
Further solution, therefore, concentrates on the Helmholtz equation of amplitude of the potential of
the longitudinal wave propagating in the environment of random, but locally isotropic, properties.
The solution itself is oriented to the spatial amplitude in longitudinal direction. The initial Laplace
operator in space thus degenerates to Laplace operator in transverse direction of wave propagation. In
the longitudinal direction the equation becomes parabolic. These formulations provide the possibility
of qualitative analyses by means of variation differentiation and the application of the Furutsu formula.
This gives rise to the partial differential equation of the mathematical mean value of response. Analogous
steps lead to the development of equations for all other stochastic moments of response.
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INTRODUCTION

The parameters of the environment in which waves of seismic origin propagate are burdened by a strong
fluctuation component and can be considered as random functions of spatial coordinates. In space the
random component of response is of the character of a heavily non-homogeneous process dependent
on the processes of perturbations of environmental parameters. The problem of wave propagation in
stochastic environment has been afforded considerable attention. The approach to its solution is based
usually on the experience from the deterministic region and the methods are selected accordingly. An
extensive survey of these activities with extensive references to further papers has been done by Mester
and Benaroya (1993) and Manolis (1993). From the number of further works directly connected with
seismicity, mention should be made of e.g. Chu et al. (1981), Askar and Cakmak (1988), Harada (1991)
etc.; special problems of non-linear character are dealt with e.g. Ostoja-Starzewski (1991), Belyaev
and Irschik (1995) etc. Beginning with a certain distance from the excitation point the solution cannot
be based on perturbation theory (e.g. Manolis, 1993), as it clashes with the energy equilibrium law
(Naprstek, 1994). This is testified to also by the analyses of the records of seismic events at various
distances from their epicentres.



Although the study of the one-dimensional problem has yielded numerous quantitative achievements
differentiating stochastic environment principally from deterministic environment even in case of small
parameter fluctuations, it cannot be used for the investigation of such a serious phenomenon as trans-
verse wave diffusion in a two- and three-dimensional environment, where it is necessary to take into
account also the factor of wave front shape, the scope of excitation coherence, etc.

MATHEMATICAL MODEL

The fluctuation of parameters turns the continuum into a random anisotropic one. The perturbation
processes are modelled usually as random functions of the vector of position. In nominal state the
continuum is considered as isotropic with constant parameters. In such a case the equations of motion
have the form of:
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¢;u(x) - continuous random homogeneous centered Gaussian processes of perturbations of parameters
of elasticity or density, as the case may be,

A%40,p° - nominal values of Lamé constants of elasticity or of the density of the material,

u = ul 4 uf (2)

u{, uf -mathematical mean value or the random component of response, as the case may be.

As this study is concerned with the qualitative and not quantitative analysis, following currently used
simplifying assumptions concerning the character of perturbations cf;(x), p*(x) can be adopted:

a) Mutual correlation of perturbations of individual components cf;;;(x) in point x is high and, conse-
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quently, the environment can be considered as locally isotropic in every point X; its perturbations
can be described by the continuous centered Gaussian processes A°(x), p®(x), i. e.

M) = X%+ X (x) 5 p(x) = p° + p(x) (3)

b) The perturbations are small in comparison with nominal parameter values; the derivatives ¢5r(x)
according to spatial coordinates may be neglected; with sufficient accuracy it holds that

(AG9) + 2u(x))™ & (X +2)7 (1 B W) (4)

c) Mutual correlation of p*(x) and A*(x), #°(x) in point x is high.

The presence of variable coefficients of above mentioned structure produces in (1) the interaction of
longitudinal and shear wave motions on the level of the random component of response. The assumptions
a) and b), however, make it possible to divide the stress field into independent longitudinal and shear
parts, each of which has its nominal and random components.

If the assumption c) has been complied with, it is possible to write the Helmholtz equation for the
complex amplitude of the longitudinal monochromatic wave in the form of:

Ap(x) + w2 (x)p(x) = 05w (x,1) = e“'gradp(x) (5)

where: ¢ - propagation velocity in point x

With reference to adopted assumptions it is possible to write approximately:

¢(x) % g*(1 + £(x))
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which means that
Ap(x) + ¢*(1 +e(x))p(x) = 0; ¢ = w’e5? (7)
Similar equation as Eq. (7) holds also for the shear part of the wave motion.

It can be assumed that in the direction of its propagation a wave can be described in the form of a
product of its amplitude and the harmonic function:

p(x) =8(x) - ; x = (z,r) (8)

z - direction of wave propagation

r - coordinates in the wave front propagation, describing the position of the investigated point with
reference to the axis z.

The function ®(x) changes in the direction z far more slowly than exp(iaz). If the mean length of
correlation of imperfections is smaller than the wave length (super critical length, see e.g. Néprstek,
1994), it can be assumed that

0*®d(x) 0%(x)
| <1 0
The substitution of (8) into (7) with the use of (9) gives the equation for ®(x):
2iq6<1>(x) + A, 8(x) + ¢%e(x)®(x) =0 ; A, = 8%/dy® + 8*/82* (10)
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Eq. (10) is in the variable z of the first order. It follows from this structure that ®(x) in the direction
z may be only of diffusion character and does not respect certain local phenomena observed in the
one-dimensional continuum (Naprstek, 1995; Belyaev and Irschik, 1995).

MATHEMATICAL MEAN VALUE OF LONGITUDINAL WAVE POTENTIAL
The operator of mathematical mean value in (10) can be differentiated according to realizations:
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®o(x) = E{®(x)} ; E{-} - operator of mathematial mean value,
and the last addend of Eq. (11) can be developed by means of the Furutsu formula:

E {F(a(t))G(a(t) + (1)} = E{ F | a(t) + 'dT-K(t,T)L E{G(a(t) +4(t))} (12)
bg(t)

a(t) - Gaussian centered process

g(t) - deterministic variation

K(t,T) - correlation functions of the process a(t)
6 - symbol of variation differentiating operation
F,G - functionals of the same process a(t)

The function ®(x) may be understood as a functional in the meaning of the composite function of the
process £(z), i. e. ®(x) = ®(e(x)). Consequently, the substitution ” F(a(t)) = &(x)” in Eq. (12),
thus replacing the differentiation according to g(¢) with the differentiation according to a(t), and the
substitution g(¢) = 0 gives, after several rearrangements: :

E {e(x)2(e(x))) = [ dv K(x,x)E { fi?g%))} LAV = do - dy - dz (13)



Adopting the hypothesis of delta correlation of imperfections in longitudinal direction and homogeneity
in transverse direction, it follows from Eq. (13) that

E {e(x)d(e(x))} = % [ drk (v - r)E{g;%} = 2K, (0)o(x) (14)

With reference to Eq. (14), the Eq. (11) can be written in the form of
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with the initial condition:
®o(0,r) = Bps(r) (16)

Now, the Eq. (10) can be re-written in the form of integro-differential equation:
_ exp(id [ dt- E T deoxpl |
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Now the mathematical mean value operator and the hypothesis of delta-correlated imperfections in the
direction z can be applied to this equation. After a number of re-arrangements it results that

Bo(z,r) = @o(O,r)-F(x,r)+%I‘(x,r) / % A0, 1) (18)

D(z,r) = E {expag [ -6, r))}

which gives the following differential equation for ®o(z,r):

5200(2,1) = 5-AuBofz, 1) + ol 1) g (T, ) (19

Introducing the characteristic functional of the field ¢(z,r):

¥(n(6,¥)) = B {exp(i [ [ e, r')n(f,r'))} = exp(0(n(' ) (20)
the Eq. (13) can be re-written in the form of:
—6%%(3:, r)= %A,‘Do(x, r)+ 56;@(%6& —1')) - ®(z, 1) (21)

which fully conforms with Eq. (15).

FLUCTUATING PART OF RESPONSE

Taking again the Eq. (10) or the integro-differential Eq. (17) as the basis, and using analogous
procedure, the equations for the stochastic moments of response can be written as:

M, o(z, {r:},{r;}) = E{<I>(a:, ry)--- ®(z,r,) - (z,ry) - - - B(z, rm)} s {ri} =11,y (22)

Writting firstly the differential equation for the quantity ®(z,r1) - - - ®(z,rm), converting it into an
integral equation of the type of Eq. (17) and modifying the operator of mathematical mean value, an



integro-differential equation of the type of Eq. (18) will be obtained, after a number of modifications
using the hypothesis of delta correlation of ¢(z,r) in the direction z, viz:

Mo m(z, {ri}, {r';}) = .
= M (s} {r3)) - B {exp (i3 [ de(Zrmr el ) — Sy el ) )} +
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M,?,m = E{®(0,r,)--- ®(0,r,)®(0,r'y - - - ®(0, ', }
Hence it is possible to derive the appropriate differential equation:
9 M= (S8 =3 A | Mam+ 20 (150607 — 1) = L3 6( — 1) | Mo (20)
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The perturbations ¢(z,r) form part of the argument of the functional © (compare with Eq. (20)) and
so far have not been specified in detail. If they are of Gaussian character and if they are delta-correlated

in the direction z, then
E {e(z,r1)e(z',r'1)} = 6(z1 — z1) K (x1,%"1) (25)

As in a statically homogeneous field (z,r) the correlation will not depend on z, the functional © will

be:
O(n(é, ) = —; [ dt [ dride' K (e ¥y )n(E man(eor)

so that Eq. (24) will obtain the form of:

aa-zMﬂ:m = 2Lq ( ?:1 A"i - 27}—"’1 Ar'j) Mn,m_ } (26)
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Developing Eq. (26) for n = 1, m = 0, the Eq. (15) or (21) for the mathematical mean value of the
response potential ®o(z,r) will be obtained. For n =m =1 and n = m = 2 it will be:

a) n=m=1 3 Ml,] = @2(2,1'1,1"1) = Qz
0%, i q
3_3; = 2q (Arl d A,q)@z - 4 (Kr(O) - Kr(r))q)'a’ (27)
The Eq. (27) can be derived also directly from Eq. (10), multiplying the Eq. (10) by ®;(x}):

22q@;—f:—€l)- . QQ(X'I) + A,.111>2(x1)<1>(2x'1) + q2e(xl)<1>2(x1)(1>2(x’1) =0 (28)

and the equation conjugate with Eq. (27) by ®,(x;):

. 0By(x’ _ _

24 26(: . B2(x"1) + A1 D2(x'1)®2(x1) + a6 (x'1) B2 (x'1)@2(%1) = 0 (29)
Subtracting Eq. (29) and Eq. (28) gives, after the application of the mathematical mean value
operator:

. 0%,y 2 ' T
2ig 2 + (A = Arn)®s + "B {(e(x1) - e(x1))a(x:)8; (%)} = 0 (30)



The last term in Eq. (30) can be developed once again using the Furutsu formula (12), into

Eq@ug—dﬁ»%ug%@u}=—%mxm—ﬁxnmz (31)

After substitution of (31) in (30) the Eq. (27) will be once again obtained..
At the same time Eq. (27) describes the mean value of wave intensity and can be solved for any
continuous function K, (r), if it complies with the conditions imposed on correlation function.

“b)n=m=2; Mys = ®4(z,r,rsre,r2) =9,

%%L = EiE(An +Arz — Ay — D) By — §(2K(0)+
+K (11 = 1) + K(ry = 5) + K(ry = 1) + K(rs = 1) = K(rz = 1) = K('2 ~ 1)),
(32)

SPECIAL CASES

Eq. (15) with the initial condition (16) can be solved without any specific problems. Its solution has
the form of:

Bo(x) = H(z,x) exp(~72) ; 7 = 50K, (0) = 25" - [ S(x)dr (33)

S(x) - spectral density of imperfections ascertained experimentally; it is possible to consider e. g. the
diffusion process, see e. g. Nigam and Narayanan (1994), Lin and Cai (1995) and many others:

2
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S(x) =

o2 - dispersal of the process £(z,r) in the direction r.
Putting (33) in (15), the equation for H(z,r) will be:

0H(z,r)

2iq 92

+AH(z,r) =0 (34)

for the initial condition (16).

Eq. (34) is parabolic and describes wave propagation in perfect environment (e{z,r) = 0). Such prob-
lem may be solved by a number of analytical or numerical methods used in deterministic problems.
Consequently, Eq. (33) can be considered as the solution of Eq. (15). It shows the drop of the math-
ematical mean value of response with the distance from the surface z = 0 in which this mathematical
mean value has been specified by the initial conditions (16). By way of example the solution of the
mathematical mean value of waves of two types can be shown:

a) Plane coherent wave

Qos(r) =C = H(z,r)=C; Qo(x)=C . " (35)
b) Cylindrical wave
_ _Cojgrz 0 10 ' _C .qr?
®o,(r) =C = H(z,r) = U A, = 2t 50> 0; ®o(x) = ;exp(z—zz —~z) (36)

A comparison of (35) and (36) reveals that the mathematical mean value of the cylindrical wave dis-
appears faster than that of the plane wave. However, this is not due to the stochastic character of the
environment, but to usual reasons known from the deterministic region.

The simple exponential drop of the mathematical mean value according to (35) is determined by the
delta-correlated imperfections in the direction z; if the process is e. g. of diffusion character, this quan-
tity starts dropping exponentially only at a certain distance in the direction z and has zero derivative



in point £ = 0, as it has been successfully proved for a semi-infinite bar (Néprstek, 1994; 1995) which
represents a case approaching most Eq. (35).

The Eq. (27) can be solved for the initial condition:

¢2(01 r, rIl) = Q'ls(rl) r,l) (37)

Introducing the transformation r, = (r; +r'1) ; rs = r; — r'; in the Eq. (27), it will be changed into:

(tioge+2 (0 ) + KO - Kwa) e rur =0 (3

s =Ys €+ 2,8, ; Tqg=Yq-€ + 24€;

Applying now the Fourier transformation according to r, to the Eq. (38), which will not interfere with
the coeflicient of the third term:

2ig0 42 _i+ﬂhmm;m ) F =0 39
’lqax Ps al'd ) rq 2(21 P rd) - ( )
®y(z,r,, 1) = /Fg(z,p,,rd) exp(zp; - rs)dps (40)

it can be seen that the Eq. (39) is a linear equation of the first order and can be solved by the method
of characteristics. Taking into account simultaneously Eq. (40), the solution can be written in the form

of

®,(z,r,,14) = /dp, : F2(0, Ps;Td - ps%) €xp (ip,r, - %/d{ (K(O) - K(rg—pq— pa%))) (41)

The Eq. (41) can be illustrated on similar examples as previously, 1. e. for a plane wave and a cylindrical
wave:

a) Plane coherent wave
®,(0,r,,rq) = Ko ; Ko - real positive value
F>(0,p,,ra) = Kob(ps)
Eq. (41) obtains the simple form of

2z
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b) Cylindrical wave

®,(0,r,,rs) = Ko 2_1r 6(rs)o(ry) ; Oz, rs,1ry) = £exp igr,-rd -D (43)
q z

m::%jd( m“-mﬁ) 4 (44)

Eqgs. (42), (43) show the decrement of correlation with the distance from the observer’s point. In special
cases this decrement is described by simple relations which determine the character of fluctuations of
the parameters of the environment itself.

Eq. (32) or Eq. (26) for n > 1, m > 1 describe higher statistical moments of response. The general
solution of Eq. (32) obviously cannot be obtained by analytical methods. However, the equation can
be solved approximately for some special cases.



CONCLUSION

Qualitative analyses of compression wave propagation in the environment with random perturbations
shows a strong tendency to Gaussian response, as long as the perturbations of environmental parameters
are also Gaussian. In the proximity of the point of excitation, however, the response is visibly of
non-Gaussian character, especially if it concerns a more complex wave than a coherent plane wave.
This characteristic, however, disappears relatively fast with distance and the response acquires an
approximately Gaussian character.

There emerge practical boundaries of applicability of the purely analytical solution to stochastic mo-
ments of the first and second orders. Higher moments, decisive for the character of response, can be
assessed only with reference to basic asymptotic characteristics. If real solution is required, the equa-
tions for higher order moments must be integrated numerically. It is possible to start with the moment
equations described in this paper. The adopted hypotheses mean nothing but an idealization by the
application of Markov processes, especially in longitudinal direction. The potential amplitude, which
has been selected as the principal descriptive quantity, can be certainly considered as a Markov process.

The study of the first moment (mathematical mean value or the effective part of the wave) and the
second moment (dispersal of wave potential or mathematical mean value of energy level as a special
case) has revealed that the form of the wave front does not exercise primary influence on the stochastic
response component. The disappearance of the mathematical mean value is determined primarily by
the local level of energy in local volume.
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