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ABSTRACT

A criterion is presented to make decisions concerning the optimal instrumentation of structural systems
subjected to earthquake ground motion. It is considered that a set of response components, to be recorded
for the identification of uncertain structural parameters, needs to be chosen given some constraints on the
number of recording instruments. A measure of goodness of an instrumentation scheme is defined in terms
of a Bayesian loss function which is related to the so-called Fisher information matrix. The criterion to
determine the optimum instrumentation alternative is then to select the one which minimizes the expected
value of the loss function. The criterion is applied to the case of structural systems subjected to seismic
ground motions modeled as stochastic processes.
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INTRODUCTION

Although several methods have been developed for identification of structural properties based on available
response records, only a few researchers have studied the problem of optimizing the location of the
recordings instruments. The first studies on this topic are probably those of Shah and Udwadia (1978). More
recently, Udwadia (1984) has proposed a methodology for the optimum sensor location problem which is
based on the use of information matrices and efficient estimators.

In this paper, a criterion for determining the optimal location of a number of recording instruments is
proposed based on a Bayesian approach. The structural properties to be identified with an instrumentation
scheme are supposed to be uncertain with known a-priori distributions. The criterion to choose an optimal
instrument location is based on minimizing a Bayesian loss function. First, the Bayesian approach is presented
and the use of efficient estimators and information matrices is discussed. The approach is then applied to the
case of MDOF systems with uncertain parameters subject to random ground motions. Expressions are derived
for the computation of the Bayesian loss function and two examples of MDOF structural systems are then
given to illustrate the use of the criterion. Results from the examples are discussed and some concluding
remarks are given at the end.



A BAYESIAN APPROACH FOR OPTIMAL INSTRUMENTATION

Consider the case where a vector of uncertain parameters ® is to be estimated based on the observation of
a set of random vectors Y, ={Y,Y,, ..., Yy}. Suppose that given certain constraints on the number of vectors
that can be observed a subset Y of M vectors out of the N vectors in Y, has to be chosen for the estimation
of ®. We would like to establish a criteria for the selection of the M vectors that should be observed so that
the “‘best’” estimate of ® is obtained.

Let f(Y/®) denote the joint probability density function of the M random vectors in the subset Y given ®.
An unbiased estimator 6(Y) of © is said to be efficient if its covariance matrix is given by,

coviB(Y)] =M™ (1)

where Mg, is the Fisher information matrix defined as

M6=Ey/e[a—%lnf(Y/6)] (-2 1nf(v/6)17 (2)

The inverse of the Fisher information matrix (FIM) is the so called Cramer-Rao lower bound, and represents
the minimum covariance that an unbiased estimator can achieved (Goodwin and Payne, 1977). Equation (1)
suggests that the greater the ‘‘size’’ of the FIM, the smaller the ‘‘size’’ of the estimator covariance matrix.

The size of the FIM becomes larger as the random vector Y becomes more sensitive to changes in the values
of the vector parameter ®.

Suppose now that we can assign to ® a prior distribution which represents the relative likelihood of the
possible values of ®. The prior distribution summarizes the information and knowledge that one has on the
likelihood of the possible values of ® before Y is observed. Each of the possible subsets Y will be
considered here as a possible ‘‘instrumentation’’ for the estimation of ®@. In order to compare between the
different instrumentation alternatives, a measure of the goodness of each alternative -related to the expected
accuracy of the parameter estimates to be obtained from the observed Y- is required. A suitable measure of
goodness can be defined in terms of a Bayesian loss function L(®, 6(Y)) for which the expectation E[L(®,
0(Y))] is to be minimized. A commonly used loss function is the so called squared error loss function,

L(6,0(Y))=(6(Y)-6)7(6(Y)-0) (3)

By definition of conditional expectation, we have that

E[L(6,0(Y))]=EyE,,4[L(0,0(Y))] (4)

Substituting (3) into (4),

E[L(8,0(Y))] =EgEy,[(0(Y)-8)T(6(Y) -0)]

5
=EgtTEy, [ (6(Y) -6) (8(Y)-6)T] %)

where fr denotes the trace of a matrix. Since Ey, [6(Y)] = ® and assuming an efficient estimator is used,
it follows from the definition in (1) that,

Ey el (8(Y) -0) (8(Y) -0) 7] =pg7 (6)

Substituting (6) into (5) we obtain

E[L(,6(Y))]=Eyltrig"] (7)

The criterion to select the optimal instrumentation alternative is then to choose for observation the subset Y



for which the expected loss in (7) is a minimum. Notice that the expected value in the right hand side of (7)
is taken with respect to ®, i.e. with respect to the prior distribution of ®. Therefore, the ability to select the
optimal alternative depends on the knowledge that one has a-priori about the properties of the system.

It may certainly be of interest not only to select the optimal subset Y but also to assess the goodness of the
selected Y for the estimation of ®. A measure of such goodness is related to the amount of uncertainty in
the prior knowledge of ® that can be reduced by observing Y. Let Cov [©/Y=y] denote the posterior
covariance of ® when the values Y=y are observed. Prior to the observation of Y, Cov[®/Y] becomes a
random matrix. Then the overall posterior covariance matrix, averaged over all possible values of Y is E,
[Cov [O/Y]]. It is important to point out that E, [Cov [@/Y]] is the posterior covariance matrix associated
with the complete process of observing Y and then estimating ®, before any particular value Y=y has been
observed. On the other hand, if the vector of parameters ® was to be predicted without observing Y, the best
estimator would be the prior mean, E[®], with prior covariance matrix Cov[®]. However, if Y can be
observed for estimating @, the reduction of uncertainty in ®, as measured by its covariance matrix, is then,

Cov[0] -E,[Cov[B/Y]] (8)

Such reduction provides a measure of the usefulness of Y for estimating ®. Suppose we choose the trace of
a covariance matrix as a norm of its size; then, the reduction of uncertainty in ©, say &(®), could be
measured by,

€(0) =trCov[0] -trE,[Cov[0/Y]] (9)

By definition of conditional expectation,

trE,[Cov[B/Y]]=trE,Ey, [ (6-60(Y)) (6-0(Y))T]
=trE[(8-0(1V)) (8-0(Y))T] (10)
=E[(6-6(Y))T(06-0(V))]

Then from (7) and (10), it follows that,

trE,[Cov(0/Y]] =Ey[ trMp"] (11)

Substituting (11) into (9), €(®) can be written as,

€(0) =trCovi(0] -Ey[trMp"] (12)

The expression in (12) allows the FIM to be used for evaluating the usefulness of Y in estimating ©. Thus,
once the optimal M vectors have been sclected from the available N in Y,, one can assess how much
uncertainty in © is reduced from the observation of Y. If prior to the instrumentation a criteria is set on the
amount of uncertainty one expects to reduce from the observation of Y, it is possible then to evaluate the
appropriateness of observing just the M vectors in Y for the estimation of ©. If the number M of vectors was
not appropriate, other optimal instrumentations can be chosen for different number of vectors in Y. From
these, the minimum number of vectors in the subset Y to achieve the expected amount of uncertainty
reduction can be determined.

APPLICATIONS TO MDOF STRUCTURAL SYSTEMS

Let Y,,Y,,...,Yx be M dimensional, independent, Gaussian, zero mean, random vectors. Let f(Y,,Y,,..., Y /
®) denote the conditional joint probability density function given the set of parameters ® and let ®, be an
uncertain parameter in ®; then
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where C=E[Y; Y/'] is a (MxM) covariance matrix and A; denotes its determinant. If M,, denotes an element
in the k-th row and I-th column of the Fisher information matrix, then by definition

dlnf dlnf
M ,=Ey o [ 55— ]
k1 Y/6 ae ael (10)
K -1
1 OlnA,; 7 oc; dlnA. _,oC;*
=Ey/0— Y; Y10 I+vi L v)]
04 & ; aek 00, 00, 7758,
It can be shown that,
oci* dlnA,
=— "1 15
Y/G (Y i ae Y ] aek ( )
Thus, given that for i not equal to j, Y; and Y, are independent, M,, can be written as follows,
K -1 -1
1 7 0C; dlnA r0C; JdlnA
M, =Eye=Y Y] Y+ 2] [v; Y+ 2] (16)
kl Y/°4; 00, 00, d9, 08,

Provided that for Gaussian random variables fourth order moments can be obtained from the second order
ones, it can be shown that

20CT pacit

., 0C; aC ., 0lnA, dlnA,
C i I

(17
Fyyo (Y1 59— Yi¥i—g - Vi1 =201 o5 » g Cil v —— —5- ‘
where the dot denotes an scalar matrix product. Substituting (17) into (16), one obtains for M,,
K
1 -1 9C; aC 1 18
Ma=53 O o5, 0, O (18)

Consider now a linear structural system with Q degrees of freedom subjected to an earthquake ground motion
modeled as a zero-mean stationary Gaussian stochastic process. Suppose there are M < Q recording
instruments available to record the response of the system. Let X,(t,), i=1,2,....M, and n=1,2,....K, be the
random lateral displacement of the system at a recording point, where t,=(n-1) At, 1/At is the sampling
frequency of the record and (K-1)At is the duration of the record. The response displacement X(t ) can be
expressed as follows,

K
;(£,) =Y Ajcos (@, t,) +B;sen(w,t,) (19)
=i

where the Fourier coefficients A;,B; are independent Gaussian variables corresponding to frequency o, =
2n (k-1)/K At. As has been shown elsewhere (Vanmarcke et al., 1993),

A2‘°[s (0) +S;; (@ pp) 1, k=2,3,...,K/2
ElA;djd = {2A(oS((ok) . k=1+K/2 (20)
AwS(w,), k=1

and E[B; B,]=E[A,A;] for k=2.3,...K/2, E[B, B;]=0 for k=1 and k=1+N/2. The cross spectral density
functions between displacement responses X; and X;, S;(w), in (20) are given by,



0
Sii(@) =Y adi|H (0,) [*S(w),) (21)
q=1

where the parameters a;? are effective modal participation factors related to the responses X; and X, H (o)
is the g-th modal transfer function, and S(w) is the ground acceleration spectral density function (Heredia-
Zavoni, 1993).

Let F, denote the vector of Fourier coefficients for frequency , at the recording points,
Fo={A;,By;i=1,2,3,.. M}. The set of Fourier coefficients F,F,, ...F are independent zero-mean Gaussian
vectors. Thus, equation (18) provides an expression for computing the elements of the corresponding Fisher
information matrix, where the covariance matrices for each of the vectors F,, n=1,2,...,K, can be assembled
using the expressions in (20) for the covariances between Fourier coefficients A,,B,. The procedure then
consists of evaluating for different combinations of response components to be recorded, say X,, i=1,2,....M, -
i.e. for different instrumentation schemes-, the expected trace of the Fisher information matrix inverse as
given in (7). The expected value is taken with respect to the uncertain structural parameters to be identified.
One then chooses that set of response components which minimizes the expected loss.

EXAMPLES

Consider a shear building with three degrees of freedom having masses concentrated at the floor levels of
m,=2 k s%in, m,=1.5 k s%in and m;=1 k s*/in, where the subscripts indicate the corresponding floor level.
For the purpose of illustration consider here the case where the floor lateral stiffnesses are uncertain and
perfectly correlated with each other. It should be noticed though, that the methodology presented above is
not restricted to the case of perfectly correlated uncertain structural parameters. The first floor lateral
stiffness, K,, will be taken as the uncertain structural parameter to be identified with an instrumentation of
the building. The lateral stiffnesses of the other two floors can be expressed as K,=c, K,, K; = ¢, K, where
the constants ¢, and ¢, are given values of 2/3 and 1/3, respectively. The a-priori probability density function
of the first floor stiffness K, will be taken as Gaussian with a mean value p of 900 k/in. The system is
subjected to a ground acceleration at the base modeled as a Gaussian White Noise process.

Table 1. Expected Loss Function for various Coefficients of Variation

C.V. 1st. Floor | 2nd. Floor | 3rd. Floor
0.05 65.39 76.96 117.46
0.10 65.52 77.10 117.66
0.15 65.80 77.44 118.19

First, consider the case where only one recording instrument is available and one wants to choose its
optimum location. Table 1 lists values of the expected loss function for coefficients of variation in the a-
priori density function of K, equal to 0.05, 0.10 and 0.15. Each column shows results obtained when the
recording instrument is located at the first, second or third floor levels. Regardless of the a-priori uncertainty
in K,, as measured by its coefficient of variation, it is found that the best location for the instrument is
always at the first floor level. Table 2 lists results for the case where two instruments are available. In such
case, it is always better to place the instruments at the first and second floor levels. The effect of the
recordings duration is shown in Table 3. Durations of approximately 5 and 10 secs are considered. In both
cases, as obtained before, the best location for a single recording instrument is the first floor level. Notice



that the longer the duration of the recording, the smaller the expected value of the loss function. Thus, a
greater uncertainty reduction is achieved with longer records. The results presented so far do not account for

the effect of noise in the records.

Table 2. Expected Loss Function given Two Recording Instruments

C.V. 1st-2nd Floors 1st-3rd Floors 2nd-3rd Floors
0.05 133.58 160.54 171.33
0.10 133.97 161.01 171.81
0.15 134.52 161.67 172.54

Table 3. Expected Loss Function for different Record Durations

Duration (sec) 1st. Floor | 2nd. Floor | 3rd Floor
10.24 185.06 217.69 331.37
5.12 371.94 438.16 670.02

Consider now a second example of a three degree of freedom shear building with floor masses m1=m2=m3=1
k s¥in. The lateral stiffnesses are taken to be uncertain and perfectly correlated. Let these stiffnesses be
expressed as K,=c,K, K,=c,K, K;=c,K, where c,, c,, ¢, are constants and K is a Gaussian variable,
KN(pg=900 k/in, 0,=90 k/in). The system is subjected to a Gaussian ground acceleration with the Kanai-
Tajimi spectral density function shown in Fig. 1. The characteristic frequency, damping and White Noise

intensity in the Kanai-Tajimi model have been taken from an estimation based on records from the Smart
1 Array (Hao, 1989).

x10
20

10
I

S(w) (cm2/seg3)

{
0 2 4 6 8

 (rad/seg)

10

Fig. 1. Kanai-Tajimi Spectral Density Function

Suppose one recording instrument is available and one is interested in determining its best location for the
identification of the uncertain stiffness K. As a test of the methodology, Table 4 lists the expected loss



function for three combinations of values for the constants c,, cz, and c,, corresponding to different
distributions of stiffness along the height of the building. When ¢,=1,c,=c,=100, the responses of all three
floors tend to be highly correlated and the results show that it is optimal to place the recording instrument
at any of the three floor levels. When the responses of the first and second floors are highly correlated
(¢,=¢,=100,c,=1) it is approximately the same to place the recording instrument at the first or second floor
levels. In the third case, when the correlation between the second and third floor responses have a high
correlation, the expected values of the loss function indicate that the recording instrument should be located
at any of these two floor levels.

Table 4. Expected Loss Function for different Stiffness Distributions

1) C2 C3 1st. Floor 2nd. Floor 3rd. Floor
1 100 100 183.86 183.89 183.86
100 100 1 14.95 15.13 94.82
100 1 100 28.96 149.62 149.32

To analyze the effect of noise in the recordings, this will be modeled as a band limited White Noise process.
It will be assumed that noises at different level recordings are statistically independent from each other.
Figure 2 shows the variation of the expected loss function versus the amplitude of the noise spectral density
function. Each curve in Fig. 2 corresponds to the expected value of the loss function for the recording
instrument placed at a given floor level. For low noise intensities, it is best to place the recording instrument
at the first floor level. However, as the noise intensity increases, the best location for the recording instrument
becomes the third floor level. Notice that it is never the best option to instrument the second floor level.
Thus, one should take into account that the results previously discussed above for the purpose of illustration,
may not always apply in the presence of noise.
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Fig. 2. Expected Loss Function versus Noise Spectral Density Amplitude



CONCLUSIONS

A criterion has been presented to make decisions concerning the optimal location of recording instruments
for the identification of uncertain structural parameters given some constraints on the number of available
instruments. The approach is based on the use of a Bayesian loss function whose expected value is expressed
in terms of the expected trace of the Fisher information matrix inverse. The criterion consists of selecting
for recording those response components which minimize the expected loss. The expected loss is evaluated
with respect to the prior probability distributions of the uncertain structural parameters to be identified. Thus,
the ability to select the optimal solution depends on the knowledge that one has a-priori about the properties
of the structural system. It is shown that the loss function can also be used to assess the reduction of
uncertainty in the structural parameters to be identified by recording some response components. An
expression has been derived to evaluate the Fisher information matrix for a set of independent Gaussian
random vectors in terms of their covariance matrices.

The criterion is applied to the case of MDOF structural systems subjected to stochastic earthquake ground
motions by expressing the response components to be recorded in terms of their Fourier coefficients. Two
examples of MDOF shear buildings with uncertain lateral stiffnesses have been given. The application of the
criterion has been illustrated through the analysis of the effect of such factors as the uncertainty in the a-
priori knowledge of structural parameters, the duration of the recordings and the distribution of stiffness with
heigth, on the optimum location of recording instruments. It has been shown that in the presence of noise
in the records, the optimum instrument locations depend on the noise level. Results have showed the
usefulness of the criterion to make decisions regarding the optimal instrumentation of structural systems.
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