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The phenomena that occurs within cohesionless saturated soils during earthquakes due to the
loss of strength or stiffness of a soil is called liquefaction. When performing liquefaction
analysis of cohesionless soils (silts, sands, and some gravels) the factors of importance include
the earthquake which that the soil profile is located (which affects the magnitude, frequency
content, peak ground acceleration, and the duration of the ground acceleration); the previous
stressing history of the soil, the topography and the level of the water table of the soil, and the
characteristics of the soil grains; their geometry, size and other soil material properties including
the rate of flow of water through the voids in the soil skeleton. The occurrence of earthquakes
and their intensity is a random phenomena; as well as the physical and material characteristics
of the soil. Therefore, in order to obtain realistic results for liquefaction analysis of a soil

profile, probabilistic ground characterization should be performed.

The challenge for probabilistic ground characterization is obtaining sufficient soil data in order
to perform a full scale study. Research dating back to the 1940's demonstrate that the soil
characteristics such as its permeability is lognormally distributed. Other parameters such as the
soil relative density, void ratio, and porosity depict non-Gaussian behavior. However, obtaining
the distribution function of the soil parameters is based on in-situ tests that give these
parameters directly; such as the triaxial test, grain size test, and atterberg limit tests. As these
in-situ tests are costly to perform in large numbers , it is difficult to attain reliable probabilistic
results. Therefore, the standard penetration resistance, commonly available in large numbers, is
utilized in the probabilistic characterization of the ground. The distribution function of the
standard penetration resistance is easily obtained, and correlated to other soil parameters
including the relative density, friction and dilation angle. Upon determining the distribution
functions for the soil parameters, random field depicting the soil profile are generated based on
the Spectral Representation Method. Upon attaining these stochastic fields, liquefaction
analysis is performed utilizing finite element methodology. The goal of the research
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presented, is to find an appropriate method to determine the distribution functions of soil

parameters.

It is important to determine the probability density function, or distribution of soil parameters in
order to generate their soil parameters stochastic fields. I[deally, the distribution functions of
soil parameters can be determined numerically. The availability of ample amounts of data is
necessary to determine the distribution. The knowledge of the spatially exact locations of data
acquisition is essential to estimate the power spectral density function of soil properties. In the
absence of the availability of data, the distribution functions are estimated and verified by
statistical tests. The data is depicted by a frequency histogram, from which a distribution
function is hypothesized. The hypothesis is then validated through a goodness-of-fit test. First,
a methodology to determine the distribution function for the soil parameter of relative density is

examined.
Probability Density Function for Relative Density of Soils :

A (skewed) distribution function is proposed for the relative density, which is studied since it
is one parameter that has boundary limitations when modeling all soils. The procedure to

obtain the probability density function for the relative density is outlined below:

1) Let F(x,y) be a Gaussian Field with zero mean and unit standard deviation which is
generated by the Spectral Representation Method. Given the mean value and standard deviation
for the relative density, X(X,y) is the resulting normalized field. "x" and "y" correspond to the
length and depth of the soil profile of interest, respectively. u(y) is the Mean Relative Density,
and; o(y):Standard Deviation of Relative Density with respect to depth, y.

X(x,y) = W(yr+o(y)F(x,y) [1]

2) From previous statistical studies performed [Ref.2, 3], it is assumed that the relative density

of a soil has a skewed distribution, and the following transformation is performed:
X(x,y) = InY(x,y) (2]

X(x,y) 1s a normally distributed field, and Y(x,y) is a lognormally distributed field. By
definition, a random variable that is lognormally distributed has a lower bound of 0. In order to
comply with an upper bound of 1, (as the relative density is bounded between 0 and 1), the
following is proposed for the field Z(x,y), considering a free parameter of a.

Z(x,y) =tanh @ , a>0, [3]



The hyperbolic tangent is bounded between -1 and 1, therefore equation [3] fits the
requirements as the lognormal distribution has a lower limit of 0.

3) Given the probability density function of Y fy(y), the distribution function for z, fz(z) can be
determined by:
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The probability density function of the lognormal distribution, f Y(y) is computed by the
expression given below where py, and ox are the mean and standard deviation of Gaussian

Field, F respectively.
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The following equation is deduced from the transformation of field Y(x,y) to Z(x,y) :
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First, the lower boundary for z is checked, given that y=0. For this transformation, z=0, and
a0.

4) The distribution of z denoting (the relative density) is determined as:
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This distribution is depicted in figure 1 for standard deviations of 1. and varying values of a.
The peak values, and their locations are determined from the first derivative of the distribution of
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The peak for standard deviation of 1 are as depicted below:
a z _f(z)
4 0.0933181  2.653686
6 0.061704 3.961436
8 0.0461486  5.273139

10 0.0368714  6.586376



The mean of the obtained deasity function £(z) is as follows:
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The mean values for the distribution, considering unit standard deviation and varying values of
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a are:
a Uz
) a4 0.320159
6 0.234578
8 0.184588
10 0.151925
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Figure 1 Distribution for Relative Density : Standard Deviation = 1

The variance of the obtained density function f(z) is as follows:

l(z_“ [__ ]

1+ -
OZ(Z)"{ o, ﬁ_[n(zh- )

(10]



Standard Penetration Resistance Probability Density Function:

Soil properties are described by their distribution functions. The distribution function is
necessary in generating their stochastic fields. In this study, a procedure to obtain the
distribution function of the standard penetration resistance is given. A Non-Gaussian
distribution must be considered to fit the data, and then tested with a goodness-of-fit method.
The distributions that appropriately depict a positive skew include the lognormal, gamma, and
beta distributions [Benjamin and Cornell].

The lognormal distribution may have a shift, "a", and the distribution function becomes:
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The gamma distribution has a probability density function fT(t), with a shift of "a":
AKt—a)fk-le=Mt-a)
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fr(t)= fort=a. [12]

The beta distribution (with lower bound, "a" and upper bound, "b"), has a probability density

function of:
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Amongst the three distributions described above, the beta distribution has 4 parameters that
define the shape of the distribution curve, which is comparatively greater than the lognormal
(one parameter) or gamma distribution (two parameters). The beta distribution has the capability
to fit nearly any histogram (any skew, or shape) with the aid of the shape parameters (q and r),
lower bound, a, and upper bound b. Therefore the beta distribution is chosen as the distribution
to fit the standard penetration resistance (histograms). Under the hypothesis that the data is beta
distributed (skewed to the left : q < r), a goodness-of-fit hypothesis test is conducted. A
goodness-of-fit test does not choose among contending models, it is a tool used to verify that a
given hypothesis is appropriate. For probability distribution models, it is a good comparison
between the shape of the distribution, to the shape of the histogram.

For these reasons, the goodness-of-fit tests have certain limitations. Variation is inherent if
samples have a small size, and therefore, more confidence is made on conclusions based on
larger sample sizes. The goodness-of-fit test selected for this study is the Kolmogorov-Smirmov
Test. It is based on the deviations between the hypothesized cumulative distribution function
Fx(x) and the cumulative histogram. The Kolmogorov-Smirnov Test is strictly valid for
continuous distributions. In the situation that only one value, the mean value is available for
each layer of depth, the next section describes a method to hypothesize the distribution function.



Three Gaussian Fields, with varying correlation distances are generated by Spectral
Representation, and transformed into Fields of Relative Density by the method proposed above.
The effect of the "free parameter” a, is studied. All of the generated fields are correctly bounded
between 0 and 1. The fields also realistically depict the values of the relative density to increase
with depth of the soil. The fields display that as the parameter a (note: c= al2) increases, the
relative density decreases. ‘
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Figure 3. Relative Density Field: c =a/2 =4



Distribution Functions Based on Single Values:

In order to conduct statistical goodness-of-fit tests with reliable results, large numbers of data are
required. Since obtaining numerous soil data is costly, it is probable to have single values of
soil parameters with depth. Under this circumstance, a procedure to determine the distribution,
and its shape parameters are outlined below. Previously the stochasticity of the standard
penetration number, N is depicted, and all soil parameters of interest to this study are stochastic
as they are correlated to N. From the distributions obtained based on large number of standard

penetration resistance the following trends are observed:

* Soil layers with small values of standard penetration resistance have small standard deviations.
* The soil layers closer to the ground surface have smaller standard deviations.
* In general, the skew is to the left, therefore shape parameters Betal(q) < Beta2 (r).

Validations and Challenges of Model

This model, and distribution function [equation 7] for Relative Density determined, is a model
that will fit real data that have distributions with a strong skew to the left. With the aid of the
free parameter, the distribution function has flexibility of fitting data, since the standard
deviation and mean shift. However, the mean cannot be controlled for dense soils directly, and
therefore, the model does not have the capability of modelling all soils. A model based on any
distribution function is introduced to model all soils. Since the standard penetration resistance
is correlated to numerous soil parameters, including the relative density, it is of greater interest
to determine the distribution for N. Therefore, a procedure to attain the probability density
function for the standard penetration resistance has also been examined.

Conclusions :

In order to perform accurate and realistic analysis for liquefaction potential of soils by finite
element analysis, their material random field must be generated, so that the material input data
resembles reality. In order to generate random soil parameter fields, their distribution functions
must be determined. Therefore, methods to obtain distribution functions are presented in this
study. The probably density functions for soil parameters are skewed, (i.e. Non-Gaussian) and
generation of fields for the standard penetration resistance based on the beta distribution
function, which can be correlated to many soil parameters, is possible by the spectral
Representation Method.
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