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ABSTRACT

An approach to study the global sensitivity of the dynamic response of structural systems as a function of a set of
design parameters is presented. The sensitivity of the system is evaluated by considering the global behavior of the
system response when the design parameters vary within a given design space. The sensitivity is computed globally
by means of response surfaces, which are evaluated by using approximation concepts. The approximation is based
on modal analysis and it is valid for general linear damped systems. Intermediate design variable and intermediate
response quantity concepts are used to enhance the accuracy of the approximation. Numerical results that illustrate
the usefulness and effectiveness of the method are presented. Great insight into the behavior of the system can be
gained using this methodology.
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INTRODUCTION

Sensitivity analysis of structural systems to variations in their parameters plays a critical role in the design and
analysis of structural systems. The basic concepts of sensitivity analysis of structural response are well documented
in a number of publications (Frank (1978), Arora and Huag (1979), Adelman and Haftka (1986)). In general, the
sensitivity of the system response is evaluated by partial derivatives of some response functions with respect to
the system parameters. Methods for computing partial derivatives of structural response include finite difference
methods, direct differentiation methods and adjoint methods. All these methods consider the variability in the
system response to local variation of the design parameters, that is, they establish a measure of the way in which
the response varies with changes in the parameters in the neighborhood of their nominal values.

Sensitivities have been derived for a number of structural systems with respect to a wide range of design parameters.
For example, sensitivity with respect to material properties {Dems and Morz (1984), Pedersen (1987)), sectional
parameters which describe beams, plates and shells (Cheng and Othoff (1982), Brockman and Lung (1988)), and
shape parameters which describe the body’s geometry (Mota et al (1984), Dopker et al (1988), Chieu (1989)).
Sensitivities have also been derived for nonlinear structural systems (Mroz Z. et al (1985), Haftka R.T and Morz
Z. (1986), Cardoso, J.B. and Arora J.S (1988)). Eigenvalue and frequency response sensitivity has also been



investigated { Nelson R.B. (1976), Ojalvo 1.U. (1986)) as well as sensitivities for elastodynamic systems (Meric
R.A (1988), Tortorelli et al (1990)). This information can be used to predict how response function value varies
for small perturbations in the model parameters without performing a reanalysis. Thus, the sensitivities offer an
efficient means of predicting the local performance of modified systems. Finally, sensitivity analyses also appear
for other classes of problems such as thermal systems, fluid dynamic systems, rigid body mechanics, structural
optimization, identification studies, reliability analyses, and general field problems.

The objective of this paper is to generalize the standard sensitivity analysis to a global sensitivity approach in
the context of structural dynamics. The method is based on modal analysis and it is valid for general damped
structures. The sensitivity of the system is evaluated by considering the global behavior of the system response
when the design parameters vary within a given design space. The sensitivity is computed globally by means of
response surfaces, which are evaluated by using local approximation concepts. This type of approach takes into
account the fact that some system parameters are difficult to determine and are usually estimated with some margin
of error. If the sensitivity is obtained without quantifying the effects of these errors in the modeling of the system
parameters, then the results can lead to misleading conclusions. The proposed method can also identify the more
influential design variables on the global behavior of the system and the less influential variables from a global point
of view.

DYNAMIC RESPONSE

The general matrix equation of motion for an n-degree-of-freedom linear structure is given by

Mii + Ci + Ku = p, 1)

where M, C, and K are the mass, damping and stiffness matrices, respectively, u is the vector of dynamic
displacements and p is the excitation vector. Defining the state space variables as

U
-3 .
Eq.(1) leads to the equations of motion in first order form, namely
Mg + K'q = p", 3)
where M*, K* and p* can be defined directly from Egs.(1) and (2).

In this study, the modal solution of the dynamic response problem will be used. In the modal approach, it is
assumed that the dynamic state space response can be represented as a linear combination of complex mode shapes
of the form

2n
g =D ¢mlt), (4)
i=1

where ¢;,i = 1,...2n are the complex right eigenvectors corresponding to Eq.(3). Substituting Eq.(4) in Eq.(3),
pre-multiplying by the complex left eigenvector x% , and using the orthogonality of the left and right eigenvector,
leads to

T (t) + Uine(t) = x;p" (5)
where T = xt M*¢, and U} = x! K*¢,. From the definition of the right and left eigenvectors, it is easily shown
that the corresponding eigenvalue A, satisfies A, = —U /T, and therefore Eq.(5) can be written as

t %
e(t) — Aen(t) = —%’,—?— , r=1,.2n. (6)
r

If the complex eigenvectors are partitioned in velocity and position parts, then the following identities are obtained:
Ty =2)\T.+ S, and U* = —A2T, + U,, where T,, U, and S, are the modal energies given by

T, = X:JrM¢pr , Up = X:;r1<¢pr y S = X;rc¢pr » (7)



where @y, and X, are the position parts of the right and left eigenvector, respectively. Using these definitions, the
complex eigenvalues can be written as

\ - =S % VSI-4LT,

2T,

=1,..2n . (8)

Introducing the definition of T and p* in Eq.(6), the differential equation for the modal participation coefficients
can be written as

XprP
@\T, +5,)

with initial conditions that can be obtained directly in terms of the initial displacement uy and velocity uq. Finally,
it is noted that the coefficients of Eq.(9) appear in complex conjugate pairs, that is, 4, (t) = 7,(¢),7 = 1,...n.

() — Aeme(t) = r=1,.2n, (9)

The general solution of Eq.(9), with initial condition at t = g, is given by

EM=6) xt p(g)
1) = Aletoly (¢ / r
wlt) = )+ TENT +5)

d€ . (10)
If general load vectors are considered, numerical integration of Eq.(10) is unavoidable to obtain 7,.(t). However,
in the context of earthquake engineering, the load vector can be assumed to be a piecewise linear function in
time, and therefore closed form solutions can be obtained. For the interval [t;,%;4;] the forcing vector is given by
p(t) = a; + b;t, where

_ Pli)tiva — p(tis)ti b = Pltiv1) - p(ti)

i = 11
tig1 — & tiv1 — (11)

The solution fcr n,(t) in the interval [t;, ¢;4,] is denoted by 7i(¢), and it is given by
ni(t) = () —of - B 1) + ot +Bi ¢, (12)

where
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Equation (12) gives a recursive formula to evaluate 7 (t) for each interval [t;,%;41]. Finally, from Eq.(4) and using
the fact that the complex eigenvectors appear in complex conjugate pairs, the vector of dynamic displacements is
given by

u(t) = 2 Re (Z¢pr 7:(t) ) ) (14)

where 7, () is given by Eq.(12).

APPROXIMATION CONCEPTS

From Eq.(14) it is clear that the response of the system u depends on its spectral properties, that is, ¢,, x, and
Ars7 = 1,..2n. At the same time, these properties depend on the vector of design variables y (y;,j = 1,..m). A
general system response R(t,y) can be written as

R(t,y) = H(f,z,y), (15)

where f (f;,i € I) denote intermediate response quantities, and z (z;,j € J) denote intermediate system parameters.
In Eq.(15) it is assumed that H is explicit in f, , and y, f;,i € I are implicit functions of z, and z;,j € J are
explicit functions of y.

Approximations are constructed by approximating the intermediate response quantities f; explicitly in terms of the
intermediate design variables . Once these approximations have been obtained, the system response R(Z,y) can be



written explicitly in terms of the set of original design variables y. In this approach, the modal energies T, Sy, U,
and the position parts of the right and left eigenvectors, ¢p, and x,-, are chosen as intermediate response quantities
and they are approximated locally in Taylor series with respect to selected intermediate system parameters as

S,
Sro + E (.‘I:o —J:jo) + ...,

T = r0+Z zo)(]—xjo)+...,§’,

i aU, - O¢pr
U = Upo + Z (zO)(zJ _zj(l) + ..., ¢pr = ¢pr0 + ;%é"c—ol(%—%o) + .y

3Xpr (1’0)

Xpr = Xpro + Z (-'L'] """'JO) + . (16)

where g = (o), and yp is the vector of base line de51gn variables.

Introducing these approximations in Eq.(10) gives

. t ex,.(t—f) )Zt p €
(1) = =i (to) + / e, (17)
to (2/\rTr + Sr)
with initial conditions approximated in a similar manner as 7., U, S; , ¢pr , and x;,. In this way, the approximation
for the transient dynamic displacements is constructed using Eq.(14) with a truncated set of modes and the
approximated modal participation coefficients given by Eq.(17). Then

N
i(t) = 2 Re ( Eépr ii-(t) ) ’ (18)
r=1

where N denotes the retained number of modes. It is noted that for this response function, the H function in
Eq.(15) corresponds to the linear combination defined in Eq.(18). For response functions other than displacements,
appropriate H functions can be defined.

In summary, the quantities T;., Sy, Uy, ¢pr and x,, for all the retained modes are chosen as intermediate response
quantities and they are approximated in terms of appropriate intermediate design variables. The approximation
of these quantities requires a standard eigenvalue and eigenvector sensitivity analysis. Finally, it is noted that
the approximations for the modal energies given in Eq.(16) have been used extensively in the area of structural

optimization. It was found that high quality approximations can be generated by using this type of approximations
(Schmit and Farshi (1974), Sepulveda and Schmit (1993)).

GLOBAL SENSITIVITY

Once the system response has been obtained in terms of the design parameters, global sensitivity estimates can
be defined directly from the representation of R(t,y). For example, the global sensitivity can be measured by the
dispersion of the response about the base or nominal response through the coefficient of sensitivity

Vit (Ry) - R(1)® dy;
maz,[R(t)] ’

where p(y;) is the measure of the range of variation of the design variable Yj» R(t) is the base line response, and
maz,[R(t)] is the maximum base line response in time. This coefficient is evaluated numerically by using the
characterization of the approximated response R(t,y). The coefficient of Eq.(19) can also be used to define a global
sensitivity or coupling matrix as

TR.yj (t) =

(19)

S(t) = (Sij(t) = ’rﬂi'yj(t)) ’ (20)

where R; denotes the system response R;. This matrix determines the degree of functional coupling in the set of
design variables with respect to different response functions.

Finally, global coefficients of sensitivity and coupling matrices can also be defined for peak responses. In this case,
the coefficient of sensitivity is defined as



\/ﬁ; fyj (maz,[R(t,y) — R(t)])2 dy;
maz,[R(t)] ’

where the peak response maxz,[R(t, y)] can be identified directly by evaluating in time the approximated response
and then choosing its maximum value.

mar __
ny;

(21)

NUMERICAL EXAMPLE

In order to illustrate the applicability of the method, a three-story two-bay shear building, shown in Fig. 1, is
considered. The values of the various parameters describing the structure and loading are set as follows: elastic
modulus for all columns = 2 x 10° kg/m?; rectangular cross-section for all columns with nominal height = 0.6m and
nominal width = 0.3m; total weight on the first and second floor = 3.5 x 10%kg and on the third floor = 2.8 x 10%kg;
and a base acceleration given by the 1971 San Fernando earthquake S82E record (IIG110 - Caltech Catalog).
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Fig. 1. Three-story two-bay shear building.

The design variables are the dimensions of the cross-section of the column elements. Three set of elements are
considered: columns corresponding to the first level with design variables b; and A;; columns corresponding to the
second level with design variables b5 and hy; and columns corresponding to the third level with design variables by
and hg. Therefore, the vector of design variables is given by yT = (b1, k1, b2, by, b3, h3)T. The response functions to
be considered for the global sensitivity analysis are the maximum displacement at the top of the building (R;), the
maximum base shear (R;), the maximum story drift at the third floor (R3), and the maximum acceleration at the
top of the building (R4). Expansions of first- and second-order in terms of intermediate design variables are used

for the approximation of the intermediate response functions. In this example problem, the intermediate design
variables are the moments of inertia of the column elements.



As previously mentioned, one way to illustrate the global sensitivity of the system response is through a global
sensitivity matrix. In this case, the following matrix is defined

Ry by Ry,b, Rj,by Ry,by
maz mazx maz maxr
1, R3,hy Rj,h, Ry,hy
Robs THRabs YRaba YReb
S= mez- mar: mar. mar> | (22)
Ry,ha R3,h3 R3,h2 Ry,hg
maz maz Tmd magz
Rl,b3 Rz,ba Ra,ba R4,b3
maz ma'x a maz

max
Ry,hs Tﬂz.hs R3,hs TR4.ha
where the coefficients of the matrix are defined as before.

Equation (23) shows the corresponding sensitivity matrix for a range of variation of 20% of the design variables
with respect to their nominal values. A second-order approximation is considered in this case and some amount of
damping is added to the system.

0.1046 0.1314 0.1383 0.0151
0.2643 0.2775 0.2798 0.0566
0.0105 0.0199 0.0138 0.0083 (23)
0.0648 0.1124 0.0985 0.0276
0.0086 0.0043 0.1240 0.0083
0.0261 0.0176 0.4064 0.0265

This matrix shows the more influential and the less influential design variables from a global point of view with
respect to different response functions. For example, the design variable h; is the most significant with respect to
the maximum displacement at the top of the building (R;). In this case a coefficient of sensitivity of 26% is obtained.
In the same manner, the design variable k3 is the most significant with respect to story drift at the third floor (Rj3).
Note that a coefficient of sensitivity of 40% is obtained in this case. Therefore, the height of the cross-section of
the columns of the third floor shows an important influence on this response. It should be noted that the maximum
coefficient for the response functions R;, Rz and Rj is greater than the corresponding parameter variability. The
global sensitivity matrix can also be used to evaluate the degree of functional coupling in the set of design variables.
For example, the design variable b; shows a strong coupling with respect to the response functions R;, R, and
R3 and a weak coupling with respect to the response R4. Similar analyses can be performed with other response
functions and design variables.

An alternative way to present and evaluate the global sensitivity of the system response is through a graphical
representation of response surfaces, that is, the response as a function of the design parameters. Figs. 2 and 3 show
the maximum displacement at the top of the building and the maximum base shear as a function of the design variable
hy, respectively. A parameter variability of 30% is consider in these figures, and the value of the design variable is
normalized by its nominal value. In order to validate the approximations used in the formulation, the exact response
is compared with the response obtained by using first- and second-order expansions in the approximation of the
intermediate response functions. The results show that these approximations give excellent results. The solution
for the case of second-order expansions is almost coincident with the exact response (direct simulation).

CONCLUSIONS

A global design sensitivity analysis, in which the sensitivity of the system is evaluated by considering the global
behavior of the system response when the design parameters vary within a given design space has been described.
The method is based on the approximation of response surfaces and it permits the analyst to quantify the response
sensitivity from a global point of view. The analysis can identify the more influential system parameters on the
global behavior of the system and the less influential variables. In addition, the proposed methodology can be very
useful in optimum redesign analysis. For example, if a given system does not meet the performance requirements,
then the global sensitivity analysis can help to identify the critical design variables. Great insight into the global
behavior of the system response can be obtained using the proposed approach. At the same time, it provides a
valuable information for rational decision making in the design and analysis of structural systems. It can be used
in combination with reliability analysis, structural optimization and fuzzy analysis. Finally, validation calculations

show that the results from the method agree very well with those obtained by direct evaluation of the response
surfaces.
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Fig. 2. Maximum displacement at the top of the building as a function of the design variable A, . (1) Exact
response; (2) First-order expansion response; (3) Second-order expansion response.
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