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CLOSED-OPEN-LOOP OPTIMAL CONTROL OF BUILDING STRUCTURES
SUBJECTED TO EXPONENTIALLY ATTENUATING HARMONIC LOADING

Genda CHEN1

SUMMARY

In the past two decades researchers in structural control community were mainly focused on the
development of closed-loop control strategies since dynamic loads exerted on structures such as
earthquakes are not known in prioror.  In this paper, a closed-open-loop control algorithm is
introduced by monitoring the dynamic loads in real time.  An estimator is used to predict the
parameters of load model.  As a pilot study, only exponentially-attenuating dynamic loads are
considered herein.  The feed forward gain factor is derived and its sensitivity to the parameters
in external loads is studied.  An illustrative single-story building is used to demonstrate the pros
and cons of the new algorithm.  Analytical results show that the algorithm is significantly
superior to the closed-loop control in reducing the dynamic responses of a structure when
subjected to an impulsive type of excitations such as blast and near-fault earthquake loads.  The
algorithm is also more efficient in use of external energy to suppress vibration in structures.
Results of this study also indicate that the closed-loop control is effective to suppress the
vibration level of structures when subjected to stationary disturbances.

INTRODUCTION

Significant progress has been made to the development of algorithms for active control of civil engineering
structures subjected to environmental loads (Housner et al., 1994).  Among various algorithms, optimal linear
quadratic regulators were studied most extensively and have been applied in small-scale and full-scale structures
(Soong et al., 1991).  The algebraic Riccati algorithm was first studied by several investigators.  These research
works were mainly focused on feedback control law because most environmental loads such as earthquake and
wind are not known in prioror.  Recognizing that, at any particular time t, the knowledge of an external
excitation prior to that time instant t may be available, Yang et al. (1987) proposed an instantaneous optimum
active control algorithm.  Later studies by Cheng et al. (1991) revealed that the feedback gain matrix in the
instantaneous algorithm is very sensitive to incremental time intervals used in response analysis.  A generalized
optimal active control algorithm was consequently developed by Cheng et al. (1991), with negligence of the
Euler equation governing the optimal solution between two boundary values.

This brief background indicates that the external excitation term has never been dealt with satisfactorily in the
development of active control algorithms.  As a result, most algorithms are approximately developed with
feedback gain only.  The end result of a closed-loop control law is mainly to introduce damping into a structure,
a feature that is also associated with any passive damper.  Increase in damping can effectively reduce the
dynamic responses of structure subjected to a gradually increasing disturbance.  For an impulsive earthquake
ground motion with a high velocity and/or acceleration pulse, such as near-fault earthquake records, damping
may not be effective in mitigation of the peak responses.  To reduce the peak displacement and acceleration of a
structure, nonlinear control laws have been recently developed by Wu (1995) and Tomasula et al. (1996).  These
nonlinear laws were derived with higher-order performance indices and can suppress the peak responses to a
certain degree.

As a first step to explore the closed-open-loop control of structures, only exponentially-attenuating harmonic
loads are considered herein.  These load models can be adopted to simulate the blast wave and shock effect on a
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building structure.  They may also represent one frequency component of a non-stationary earthquake ground
motion.  In addition, the exact solution derived for this type of loads can be used to verify the accuracy of other
control algorithms designed for general dynamic loads.  This paper is aimed to answer the following questions:
1)  Under what circumstances is a closed-loop control algorithm effective regardless of the external excitation to
a structure?  2)  Does a closed-open-loop control always consume less/more amount of external energy than a
corresponding closed-loop control to achieve the same performance level?

CLOSED-OPEN-LOOP CONTROL ALGORITHM

Consider a building structure modeled by an n-degree-of-freedom lumped mass-spring-dashpot system.  The
matrix equation of motion of the structural system with a control mechanism can be written as

(t)Du+t)(cosefE = (t)XK+(t)XC+(t)XM t-
o βα⋅⋅⋅⋅                                (1)

in which M, C and K are, respectively, the n×n mass, damping and stiffness matrices, and X(t) is the n-
dimensional displacement with respect to the base of the structure.  The n-dimensional vector E defines location
of the external excitation of peak force fo and, α(>0) and β represent the decaying rate and frequency of the
excitation, respectively. The n×m matrix D defines location of the control force and u(t) is the m-dimensional
control force vector.  In the state- space, the above equation can be written in the form

Z = (o)Z   t),(cosefH+(t)Bu+(t)AZ = (t)Z o
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o βα                                     (2)
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A quadratic performance index is usually chosen for study in structural control.  It can be expressed into

[ ]dt(t)uR(t)u + (t)QZ(t)Z TT∫t
o

f

2

1
 = J                                                      (4)

where Q and R denote, respectively, a 2n×2n positive semi-definite matrix and an m×m positive definite matrix.
In Eq. (4), the superscript T indicates vector or matrix transpose, and the time interval [0, tf] is defined to be
longer than that of the external excitation.  The minimum performance index J, defined by Eq. (4) and subject to
the constraint represented by Eq. (2), is reached using a closed-open-loop control law when (Soong 1990)

[ ]T(t)P(t)Z(t) BR - = (t)u T-1 +                                                          (5)

in which the superscript -1 denotes the inverse of a matrix. The gain matrix P(t) is the solution of a Riccati
equation for closed-loop control which can be considered as constant for structural applications (Yang et al.,
1987).  The open-loop control part satisfies

( ) 0.=)t(T   t),(cosefPH-(t)TA-BPBR=(t)T f
t-

o
TT-1 βα                              (6)

The external excitation, foe
-αt cos (βt), is the real part of a complex exponential function foe

-(α+iβ)t in which
1-=i  is an imaginary unit. The open-loop part of control law can thus be written as the real part of

S(t)foe
-(α+iβ)t.   The gain matrix S(t) in general is complex and can be derived as

( ) ( )[ ] PHA-BPBR+I)i+(e-I=(t)S TT-1 -1-1)]()-[( βαβα ΦΦ −Λ++ ttIi t                                           (7)
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where Λ is a 2n×2n diagonal matrix and Φ is a 2n×2n matrix.  Each element in diagonal of the matrix Λ and
each column in the matrix Φ denote, respectively, an eigenvalue and corresponding eigenvector of the matrix
(PBR-1BT - AT).  The open-loop control T(t) finally takes the form

[ ] [ ] t)(sinefS(t)Im+t)(cosefS(t)Re=(t)T t-
o

t-
o ββ αα                                           (8)

where Re[ ] and Im[ ] denote, respectively, the real and imaginary part of a complex number in the bracket.

It is noted that the uncontrolled building structure is stable and in general so is the structure controlled with a
closed-loop algorithm (T(t) = 0).  The system matrices A and A-BR-1BTP of both structures thus have complex
eigenvalues of negative real part when damped vibration is considered.  This means that the eigenvalues of the
system described by Eq. (6) are of positive real part and they cannot be equal to -(α+iβ).  Therefore, Eq. (7)
represents the sole solution of the system.

To understand how the gain matrix S(t) varies with other parameters and to study the performance and energy
consumption of the open-loop control, a single-story frame structure is studied (Soong, 1990).  The equation of
motion of the simple system is

0=(o)x=x(o)  u(t),+t)(ef=x(t)+(t)x2+(t)x t-
o

2 βωξω α cos                                (9)

where ξ and ω are, respectively, the damping ratio and natural frequency of the uncontrolled structural system.
For this study, two weighting matrices Q and R are selected as follows
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where γ is a dimensionless coefficient that determines the relative importance of control effectiveness (response
reduction) and economy (control force requirements).  γ=  represents the uncontrolled case.  Under these
conditions, the closed-loop gain matrix P can be expressed into (Wu, 1995)
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in which γν 1/+1=1  and ξνν 2
12 1)/-0.5(+1= .

PARAMETRIC STUDIES ON THE GAIN MATRIX S(T)

From Eq. (5), one can see that only the second element of the 2×1 vector S(t) of the single-story frame structure
is needed to determine the control force required.  This element, denoted by S2(t), can be derived from Eq. (7)
and its stationary solution is presented in two parts as
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The transient solution of S2(t) is lengthy and usually not necessary to be included in structural control since the
ratio S2(t)/R remains constant, then oscillates for several cycles and finally drops to zero at the terminal instant.
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It dies out faster than e-αt, depending on the equivalent damping of a closed-loop control, and thus has little
influence on the performance of the proposed control algorithm as long as the terminal instant tf in Eq. (4) is
sufficiently long.

As one can see from Eqs. (12) and (13), the ratio S2/R is a function of γ, ξ, α/ω and β/ω.  When β/ω=0, the
structural system is subjected to a monotonically-decreasing load and the imaginary part of the gain matrix S2

vanishes.  To see the effect of the exciting frequency β on the open-loop control gain factor, both Re[S2]/R and
Im[S2]/R are plotted in Figs.1(a,b) for a constant structural damping ξ=0.0124 and control coefficient γ=1.  It can
be clearly observed that the open-loop control gain factor strongly depends on the exciting frequency β only for
low decaying rate α.  The rate of change in the imaginary part of gain factor is maximized around β/ω=1, which
is the resonant case.  This result indicates that, for rapidly-decaying excitations, a single gain factor can be used
to approximately represent those corresponding to various exciting frequencies.  Such a design is particularly
effective for low frequency excitations.

PERFORMANCE OF CLOSED-OPEN-LOOP CONTROL ALGORITHM

For the frame structure exemplified in the parametric studies, the optimal closed-open-loop control force can be
derived from Eq. (5) as follows:

[ ] t)(ef
R

]SIm[
-t)(ef

R

]SRe[
-(t)x1)-(2+1)x(t)-(-=u(t) t-

o
2t-

o
2

21
2 ββνξωνω αα sincos      (14)

After introducing Eq. (14) into Eq. (9), the displacement x(t) and velocity (t)x  can be determined.  Their

detailed derivation and results are not shown in this paper due to the limited space.  The power consumed by the
actuator can then be determined by

(t).x-u(t)=p(t)                                                                       (15)

The displacements and velocities of the structure are presented in Figs. 2(a,b) along with control forces and
power consumption of actuator.  They are compared with those of uncontrolled structure and of the structure
controlled with the closed-loop law. It can be observed that both displacements and velocities are reduced the
most when the structure is controlled with a closed-open-loop algorithm.  The faster the excitation decays, the
more effective this algorithm.  In comparison with the closed-loop control, the new algorithm can suppress the
peak displacements more than 50% while the maximum control force required is only increased about 25%.
This extra reduction in peak response per unit control force is attributable to non-concurrence between the
maxima of response and excitation.  As a result, power consumed by actuator with the new algorithm is even less
as evidenced in Figs. 2(a,b).  In particular, when an uncontrolled structure vibrates in a resonant mode as shown
in Fig. 2(a), control with the new algorithm can completely suppress the vibration with the same control force as
required with a closed-loop algorithm but a significantly less amount of power required.

It has been proved that a closed-loop control algorithm is optimal in mitigating structural responses under white
noise excitations.  Figure 2(a) shows that the closed-loop control strategy can also be employed to effectively
reduce the responses when the structure is subject to harmonic loading.  This result indicates the effectiveness of
the conventional closed-loop control scheme for any stationary excitations regardless of their frequency
bandwidth.

MONITORING OF EXTERNAL EXCITATIONS

This study only concerns the exponentially-attenuating loads, e.g., t)(ef=f(t) t-
o βα cos .  Two parameters, α

and β, can characterize a  time-varying feature of such loads.  Since the parameter β does not significantly affect
the performance of the algorithm for rapidly-decaying excitations (Fig. 1), it can just be assigned an average
value based on engineering judgment.  Only the parameter  α needs to be monitored in real time in order to
implement a closed-open-loop control algorithm.

Suppose the external excitation f(t) is sampled with a time interval Δt.  The parameter α can then be estimated by
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To show the effects of the above estimation and the gain factor approximation in terms of β on the performance
of the proposed algorithm, the displacement, velocity, control force and energy consumption of the single-story
structure for the two cases (β/ω=1) as shown in Figs. 2(a,b) are presented in Figs. 3(a,b) when the gain factor of
the open-loop control is calculated with β/ω=0 and Eq. (16) is used to estimate the parameter α.  In comparison
with Figs. 2(a,b), one can find that all response quantities are very close to those corresponding to the gain
factors determined with the actual β value.  Their difference decreases rapidly as the decaying rate of the
excitation increases.  This indicates that the new algorithm can also be applied to effectively control the dynamic
responses of a structure under an impulsive type of earthquake loads such as near-fault effect.

CONCLUSIONS

A closed-open-loop control strategy has been applied to structural control.  The open-loop part of the control
algorithm is implemented in real time by means of instrumentation.  Based on this study, the proposed algorithm
is significantly superior to the closed-loop control when the decaying rate of the dynamic loads is greater than
the product of damping ratio and natural frequency of the building structure.  Specifically it is more efficient to
reduce the peak response of the structure per unit energy consumption when the structure is subjected to
impulsive types of dynamic loads.  The proposed estimator on the parameters in external loads is very effective
as demonstrated with the illustrative example.  Since the performance of the algorithm is not so sensitive to the
pitch of excitations, the algorithm is expected to work reasonably well in controlling seismic responses of a
structure. This study also shows that the conventional closed-loop control is effective in reducing the peak
responses of structures under stationary excitations.
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Fig. 2  Displacement, velocity, control force and power consumption
associated with accurate open-loop control gain
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Fig. 3  Displacement, velocity, control force and power consumption
associated with approximate open-loop control gain


