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SUMMARY

The load versus deformation behavior of a reinforced concrete (RC) panel element under
membrane stresses can be predicted by the modified compression field theory (MCFT) and the
softened truss model (STM). In these theories, the stress−strain relationships for reinforcing bars
are derived from tests with uniaxial tension. When these relationships are applied to an element
under biaxial stresses, the Poisson’s effect is neglected.  This leads to an unconservative
overestimate of the shear resistance offered by the element.  The present research investigated the
Poisson’s effect in RC panels and refined the existing formulation of the STM.  To incorporate the
Poisson’s effect in the analysis of panels, an orthotropic formulation was developed, based on the
concept of apparent Poisson’s ratio (APR).  The APRs were quantified by testing panels under
biaxial tension−compression.  It was demonstrated that when the Poisson’s effect is incorporated,
the predicted behavior of a panel gets closer to the experimental results.

INTRODUCTION

Wall− and shell−type structures, like shear walls, nuclear containment vessels and beams with deep and thin
webs, are common applications of reinforced concrete (RC).  The predominant stresses in the walls of these
structures are two dimensional in-plane normal and shear stresses, which are commonly referred to as membrane
stresses.  The analysis of these structures can be performed by the finite element method, where the wall is
usually visualized as an assemblage of rectangular elements.  A rectangular element subjected to membrane
stresses, is referred to as a “panel element”.  The two elegant theories for predicting the load–deformation
behavior of a panel element, are the modified compression field theory (MCFT) [Vecchio and Collins, 1986] and
the softened truss model (STM) [Hsu, 1993].  The two theories are based on the equilibrium of external and
internal stresses, the compatibility of strains in concrete and reinforcing bars (rebar) and the constitutive
relationships of concrete and rebar.  The stress–strain relationships of rebar under tension are based on tests of
bare rebar, with the assumption of elastic–perfectly-plastic behavior (as in the MCFT), or are derived from tests
of panels with a state of uniaxial stress (as in the STM, Belarbi and Hsu, 1994).  The relationships are applied,
without any modification, to panel elements under a state of biaxial stresses generated from shear.  This leads to
an anomaly in the predicted behavior of a panel element.  In order to rectify the drawback, the present research
investigates the effect of biaxial stresses in the constitutive relationship of rebar.  Rectification of the anomaly
leads to the prediction of a realistic shear resistance of a panel element, with reduced capacity at ultimate load
and increased deformation at service load.  This is encouraging as regards the prediction of ductility and the
design of reinforcement in wall– and shell–type structures located in earthquake prone areas.

SOFTENED TRUSS MODEL

The present formulation of the effect of biaxial stresses is based on the STM and hence, a brief introduction of
the STM

is provided.  The STM was developed at University of Houston for predicting the postcracking nonlinear
behavior of RC panel elements under membrane stresses.  An important aspect of the STM is the concept of
‘average’ stresses and ‘average’ strains.  After cracking, although the concrete becomes discontinuous, the
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reinforced concrete is treated as a continuous homogenous medium, with the values of stresses and strains as
average quantities along the finite dimensions of an element. Henceforth, the terms stress and strain will be used
to refer to the average values, unless mentioned otherwise.

Three coordinate systems are defined to express the equations of equilibrium and compatibility, and the
constitutive relationships.  First, the longitudinal ( ) and transverse (t) directions of the orthogonal grid of
reinforcement constitute the –t coordinate system (Fig. 1).  The applied external normal (σ  and σt) and shear
stresses (τ t) are expressed in this coordinate system.  Second, when the external stresses are expressed in terms
of the principal stresses (σ2 and σ1), the directions of the principal stresses constitute the 2–1 coordinate system.
σ2 and σ1 represent the compressive stress and tensile stress, respectively, for elements under predominant shear
stresses.  The third coordinate system is related with the internal stresses in concrete.  When the stresses in
concrete are expressed in terms of the principal compressive stress (σd) and the principal tensile stress (σr), the
directions of the two principal stresses constitute the d–r coordinate system.  The inclinations of the 2–1 and the
d–r coordinate systems with respect to the –t coordinate system are denoted as α2 and α, respectively.

The equations of equilibrium and compatibility, and the constitutive relationships of the STM are as follows.

Equations of equilibrium

(1)

Here, ρ  and ρt are the reinforcement ratios along - and t- axes, respectively.  The corresponding stresses in the
rebar are f  and ft, respectively.  It is assumed that the rebar carries axial stresses only, that is, the dowel action is
neglected.

Equations of compatibility

(2)

Here, ε  and εt are the normal strains and γ t is the shear strain in the –t coordinate system.  Assuming the
principal axes to be same for the stress and strain, the principal strains in concrete along d- and r- axes are
denoted as εd and εr, respectively.

Constitutive relationships

Concrete in compression

For the ascending branch (εd/ζε0 ≤ 1), the parabolic relationship is as follows.

αασστ
ρασασσ

ρασασσ

cos )sin+(-=

f+cos +sin =

f+sin +cos =

rdt

tt
2

r
2

dt

2
r

2
d

ααεεγ
αεαεε

αεαεε

cos )sin+2(-=

cos +sin =

sin +cos =

rdt

2
r

2
dt

2
r

2
d

σ
τ

σ
τ

t

t

t

1

t
2

σσ
21

α2 r

t
d

σσ
dr

α

a) Applied stresses b) Principal axes 2 and 1
for applied stresses

c) Principal axes d and r
for stresses in concrete

Figure 1.  Coordinate systems in panel element

t



03513

(3)

The cylinder compressive strength and the strain corresponding to the peak stress in cylinder are denoted as /
cf

and ε0, respectively.  The reductions of the peak compressive stress and the corresponding strain under tensile
strain in the perpendicular direction are quantified by the softening coefficient ζ [Belarbi and Hsu, 1995].  The
descending branch can be also modeled by a parabolic expression.

Concrete in tension

The average principal tensile stress (σr) increases linearly with respect to the average principal tensile strain (εr),
till cracking.  The stiffness is comparable to that for plain concrete.  After cracking, σr reduces rapidly with
increasing εr.

Rebar in tension

The bilinear model, developed by Belarbi and Hsu [1994], is provided below.  The two equations correspond to
the elastic and postelastic stages, respectively.

For εs  ≤ *

n
ε

(4)

For εs  > *

n
ε

(5)

where, fs or εs are the stress and strain in the rebar, respectively.  The subscript s is a generalized notation for 

and t. Es is the modulus of steel.  The intercept and slope of the postyield curve are denoted as *
0f  and *

pE ,

respectively.  The strain *

n
ε  approximates the apparent yield strain *

yε .  The apparent yield strain is the strain,

beyond which the average stress–strain relationship deviates from the elastic behavior.  The stress corresponding

to *
yε  is termed as the apparent yield stress and is denoted as f *

y .  Since the model was developed by testing

panels under uniaxial tension, it can be termed as the uniaxial constitutive relationship.

MODELING OF THE EFFECT OF BIAXIAL STRESSES

The drawback in the STM arises due to the neglect of the Poisson’s effect in a panel element under biaxial
stresses.  In a state of biaxial stresses a strain has two components, one caused by the stress along its direction
and the other caused by the stress along the perpendicular direction.  The two components can be termed as the
uniaxial and biaxial components, respectively.  The generation of the biaxial component is called the Poisson’s
effect.  In the STM, the two components of the strain are not treated separately.  The stress in rebar is related to
the total strain by the uniaxial relationship (Eqs. 4 and 5).  This leads to overestimates of the rebar stress and
consequently the shear stress (τ t) carried by the panel element.  As a corollary, the shear deformation (γ t) is
underestimated.  Moreover, the theoretical τ t versus γ t curve shows reduction in γ t with decreasing τ t beyond
the peak stress in concrete.  This contradicts the experimentally observed increasing γ t.  The anomaly arises
while maintaining equilibrium between decreasing compressive stress in concrete (σd) and increasing tensile
stress in the rebar (fs) due to strain hardening.

The Poisson’s effect is direction dependent for anisotropic materials.  To quantify the anisotropy with a limited
number of variables, the present formulation of the Poisson’s effect is limited to orthotropic panel elements with
reinforcement symmetric about the principal axes of applied stresses (2–1 coordinate system).  In such elements,
the d- and r- axes become the axes of symmetry and they are selected to quantify the orthotropy.

To decompose a strain into the uniaxial and biaxial components, the concept of Apparent Poisson’s Ratio (APR)
was introduced [Belarbi and Sengupta, 1996].  An APR is defined as the negative of the ratio of the biaxial
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component of the strain in one direction to the uniaxial component of the strain in the perpendicular direction.
The strains εd and εr are each decomposed into the two components as shown below, where the subscripts u and

b refer to the uniaxial and biaxial components, respectively. ν*
rd and ν*

dr

are the APRs defined in the d–r coordinate system.  They express the effect of tension on the compressive strain
and the effect of compression on the tensile strain, respectively.  [N] is the matrix containing the APRs.

(6)

According to the above definition, the following are the expressions of the APRs in terms of the strain
components.

(7)

The uniaxial components of the rebar strains, ε u and εtu, can be expressed in terms of εd and εr by a strain
transformation and in conjunction with Eq. (6) as follows.

(8)

[T] is the transformation matrix relating the strains in the d–r coordinate system with the strains in the –t
coordinate system.  Substituting the expression of [N]–1, ε u and εtu are as given below.

(9)

It was found from test results that after cracking, ν*
rd  becomes negligible as compared to ν*

dr and its value

approaches zero.  If ν*
rd  is assumed to be zero, Eq. (9) is simplified.  A general expression of ε u and εtu can be

written in the following form.

(10)

where, f(α) is equal to sin2α or cos2α for rebar along - and t- axes, respectively.

The stress fs can be computed from εsu by the uniaxial relationship.  For piecewise linear equations of the
uniaxial relationship, as in Eqs. (4) and (5), fs can be expressed as follows.

(11)

Here, the function FU represents
the uniaxial relationship.  The function FB expresses fs in terms of the total strains εs and εd.  This function can be
termed as the biaxial constitutive relationship of the rebar. The Poisson’s effect is incorporated through the term
f(α) ν*

dr FU(εd), and this differentiates the biaxial relationship form the uniaxial counterpart.  Since εd is negative,
the term implies a reduction of the stress from the value given by the uniaxial relationship.  As a corollary, for a
given value of fs, the corresponding strain by the biaxial relationship is more than the uniaxial relationship.
When the curves of the biaxial and uniaxial relationships are overlapped, the biaxial curve appears to be
stretched from the uniaxial curve along the strain axis (Fig. 2).
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A theoretical study was undertaken [Sengupta, 1998] to investigate the Poisson’s effect in the panels tested at
University of Houston under biaxial tension–compression.  It was observed that the APRs do not remain constant
throughout the loading history.  The value of ν*

dr  is high for severely cracked panels and becomes large due to
the discontinuity in the medium.  It exceeds 0.5, which is the limiting value of Poisson’s ratio for a continuous
elastic medium.  The compressive stress in concrete (σd), the tensile stress in the primary longitudinal
reinforcement (f ) and the amount of longitudinal reinforcement (expressed in terms of ρ ) were identified as
parameters that may effect the variation of ν*

dr .  On the contrary, ν*
rd  was found to decrease rapidly after

cracking of concrete.

EXPERIMENTAL RESULTS

The objective of the tests was to measure ν*
dr  for panels under biaxial tension–compression and to quantify its

variation with respect to the identified parameters σd, f  and ρ .  The modeling of ν*
dr  involves the modeling of

εrb and εdu (Eq. 7). With 0=*
rdν  after cracking, the expression of εdu is same as that of εd, which is available from

the constitutive relationship of concrete under compression (Eq. 3).  Hence, emphasis was laid on the evaluation
of the variation of εrb. It was also intended to study the effect of the load path on ν*

dr  and to confirm the

reduction of ν*
rd  after the cracking of concrete.

To have parameters comparable for different panels, σd and f  are normalized as S(σd) = σd/ζ /
cf  and R(f ) =

f / f *
y , respectively.  The factor ζ /

cf  is the instantaneous capacity of concrete in the panel.  For rebar, the

significance of normalizing f  with respect to f *
y  is to treat the elastic and postelastic regions separately.

A total of 18 panels were tested in the present program, under biaxial tension–compression [Sengupta, 1998].
The primary longitudinal rebar was aligned along the direction of tension, which implies compression was
perpendicular to the -axis (α2 = 90°).  The purpose of selecting this alignment was to quantify the Poisson’s
effect without the influence of the dowel action in the rebar.  The panels were either square (30 in. × 30 in. × 3
in.) or rectangular (42 in. × 30 in. × 3 in.) (1 in. = 2.54 cm).  The rectangular panels had additional longitudinal
rebar outside the test region, so that yielding occurred in the test region prior to that at the loaded edges.

The panels were subjected to two types of load path.  Since the measurement of the APRs imply measurement of
the uniaxial and biaxial components of the strains εd and εr, the load paths were selected such that the strains
could be decomposed into the two components correctly and conveniently.  The first type was the sequential
tension–compression and the second type was the proportional load path, discretized to a stepped scheme.

The 18 panels were divided into 6 series (Table 1).  Here, fy  and fyt are the yield stresses of the rebar (under bare
condition) along - and t- axes, respectively.  The value of R(f ) for a panel correspond to the final tension
applied.  The panels of each of A-, C- and E- series had identical reinforcement, but they were subjected to

Rebar embedded in concrete

(a) Bare rebar (b) Uniaxial

(c) Biaxial

f

ε

s

s

���� ���� ����
(a) (b) (c)

Figure 2.  Tensile stress-strain curves for bare rebar and rebar embedded in concrete
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different values of R(f ) to study the effect of f  on the magnitude of εrb.  Panels A1 and C1 were subjected to
uniaxial compression (R(f ) = 0).  For Panels E2 and E3, there was substantial yielding of the rebar.  The 4
panels of B-series (including Panel A3, which is also denoted as B2) had varying amount of longitudinal
reinforcement, to study the effect of ρ .  Panel D3 was loaded proportionally till the tension reached a certain
value.  After that, the tension was kept constant and compression was increased till failure, analogous to
sequential loading.

The variations of εrb and ν*
dr  in absence of tension (R(f ) = 0), was studied from Panels A1 and C1.  For the rest

16 panels with R(f ) > 0, the values of  εrb and ν*
dr  were substantially higher.  It proved that f  has a definite

influence on the biaxial expansion of a panel.  From the B-series panels (panels with varying ρ ), the effect of ρ
was not evident.  For the panels subjected to sequential loading, although εrb increased, ν*

dr  decreased with

increasing σd.  At the onset of compression, εrb increased at a higher rate than εdu and hence, large values of ν*
dr

were recorded.  With increasing compression, the rate of increase of εdu got larger, which resulted in diminishing
values of ν*

dr .  For panels tested under proportional loading, ν*
dr  increased with increasing σd.  This was

because, initially the rate of increase of εrb was low; but with increasing f , the rate got larger.  The effect of load
path thus originates from the influence of f  on the increase of εrb.  It was also verified that ν*

rd  reduces to zero
after cracking.

Modeling of νννν*
dr

To model ν*
dr , the expansive strain εrb is decomposed into two components.

(12)

where, ε0
rb is the strain that would occur under uniaxial compression (that is, in absence of f ),  and εf

rb is the

additional strain in the presence of f .  From Eq. (7), ν*
dr can be expressed as follows.

Table 1: Test panel data

Panel Shape ρ

(%)

ρt

(%)

fy

(ksi)†

fyt

(ksi)

f /
c

(psi)

Load path‡
R(f  ) Parameters

studied

A1 Sq. 0.89 0.49 52.6 54.4 4409 S 0.00
A2 Sq. 0.89 0.49 52.6 54.4 4409 S 0.87

A3 (B2) Sq. 0.89 0.49 52.6 54.4 4409 S 0.92
σd and f

B1 Sq. 0.44 0.49 52.6 54.4 4409 S 1.02
B3 Sq. 1.55 0.49 52.6 54.4 4409 S 0.42
B4 Sq. 2.00 0.49 52.6 54.4 4409 S 0.57

σd and ρ

C1 Sq. 1.10 0.49 53.8 56.2 5491 S 0.00
C2 Sq. 1.10 0.49 53.8 56.2 5491 S 0.76

σd and f

D1 Sq. 1.10 0.49 53.8 56.2 5491 P 0.24
D2 Sq. 1.10 0.49 53.8 56.2 5635 P 0.64
D3 Sq. 1.10 0.49 53.8 56.2 5635 P-S 0.68
D4 Sq. 1.10 0.49 53.8 56.2 5635 P 0.36

Load path
and f

E1 Rect. 0.86 0.52 56.2 56.2 2701 S 1.01
E2 Rect. 0.86 0.52 56.2 56.2 2825 S 1.13
E3 Rect. 0.86 0.52 56.2 56.2 3414 S 1.29
E4 Rect. 0.86 0.52 56.2 56.2 3842 S 0.92

σd and f

F1 Rect. 0.86 0.52 56.2 56.2 2763 P 0.80
F2 Rect. 0.86 0.52 56.2 56.2 3414 P 1.03

Load path
and f

† 1 ksi = 1000 psi = 6.896 MPa

‡ S: sequential, P: proportional

f
rb

0
rbrb +  = εεε
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(13)

where ν*0
dr   = − ε0

rb /εdu.  The modeling of ν*
dr involves the modeling of ν*0

dr , εf
rb and εdu.  As for εdu, its difference

with εd is negligible (as evident from ν*
rd  = 0).  Hence, the expression of εd from the stress–strain relationship of

concrete under compression can be substituted as the expression of εdu.  For S(σd) ≤ 1, transposing the terms of
Eq. 3,

(14)

From the panels tested under uniaxial compression, the variation of ν*0
dr  with respect to S(σd) is modeled as

follows.
(15)

Regarding εf
rb , the variation is different before and after the yielding of the rebar.  Till yielding, that is with R(f )

≤ 1, the variation of εf
rb  is reasonably linear with respect to R(f ) and S(σd).

For R(f ) ≤ 1
)S( )fR( 0.002 = d

f
rb σε

(16)

At the yielding of the rebar, the variation of εf
rb  with respect to R(f ) has a noticeable jump.  Beyond yielding,

the variation is again practically linear.  In the postyield region, the variation of εf
rb  with respect to S(σd) is

linear up to around S(σd) = 0.75.  Beyond that it increases at a higher rate.  Based on these observations, the
following equation is proposed for the postyield variation of εf

rb .

For R(f ) > 1

(17)

The models of ν*0
dr , εf

rb and εdu are valid up to the peak compressive stress in concrete (S(σd) = 1).  With strain

controlled tests, the models of the three quantities and consequently that of ν*
dr  can be extended beyond the peak

stress in concrete.

APPLICATION OF THE MODEL

The STM algorithm developed by Hsu [1993] was modified to incorporate the Poisson’s effect [Sengupta, 1998].
Using the algorithm, the shear stress–strain (τ t versus γ t) behaviors of selected RC panels tested at University of
Houston [Pang and Hsu, 1995] and University of Toronto [Vecchio and Collins, 1986] were predicted and
compared with the experimental data.  The panels had equal amount of longitudinal and transverse
reinforcements with α2 = 45°, and were tested under pure shear.  The formulation of the Poisson’s effect is
applicable for such panels.  But in the present experimental program, to avoid the effect of dowel action, panels
with α2 = 90° were tested to quantify ν*

dr .  Since the expression of ν*
dr  may not be precise, the results should be

viewed as qualitative.  As typical examples, Figure 3 shows the τ t versus γ t curves for Panel A2 (tested at
University of Houston) and Panel PV8 (tested at University of Toronto), calculated by neglecting and including
the APR.  It can be noted that the curves including the APR, predict the behavior closer to the experimental
values.  It is also demonstrated that by extending the model of ν*

dr  hypothetically beyond the peak stress in

concrete, the STM can indeed predict the descending branch of the τ t versus γ t curve when the Poisson’s effect
is incorporated.
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Figure 3.  Experimental and predicted shear stress–strain curves

CONCLUSION

The use of the uniaxial stress–strain relationship for rebar under tension in panel elements, leads to an
unconservative overestimate of the shear resistance.  In the present research, the Poisson’s effect is incorporated
through the development of the biaxial constitutive relationship for rebar under tension.  The concept of apparent
Poisson’s ratio (APR) is introduced for quantifying the Poisson’s effect.  Based on the tests of 18 panels, models
of the APR are developed.  It is shown that with the inclusion of the Poisson’s effect, the predicted behavior
correlate better with the experimental results.  The incorporation of the biaxial effect indeed enhances the
capability of the STM in predicting the behavior of panel elements under membrane stresses.
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