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ABSTRACT 

In this work we present a semi-blind algorithm for 
the estimation of a flat-fading MIMO channel matrix H .  
The algorithm is based on a decomposition of the chan- 
ne1 matrix H as the product of a Whitening matrix W 
and a Unitary matrix Q. The whitening matrix can he 
estimated blindly from all received data. Several tech- 
niques are then suggested to estimate the optimum ro- 
tation matrix from training samples. Since it uses both 
blind and training data, the algorithm is semi-blind in 
nature. Theoretical results show that estimation of the 
channel matrix based on estimating only the Q matrix 
from pilot data can perform more efficiently than esti- 
mating H directly from the pilot data. However, per- 
formance of the technique depends on the accuracy with 
which W is estimated and is found to typically perform 
well in low SNR and fading environments. 

I. INTRODUCTION 

MIMO and s m r t  antenna systems are now widely be- 
ing employed to combat the problems of multi-user in- 
terference, fading in wireless channels, and to achieve 
high data rates. As the number of input data streams 
increases on MIMO channels, employing entirely pi- 
lot data to learn the channel parameters would result in 
poorer spectral efficiency. Moreover, such techniques 
tend not to use the information in the unknown data 
symbols to improve channel estimates. Semi-blind tech- 
niques can potentially enhance the quality of such esti- 
mates by making a more complete use of available data. 
Overhead costs can he reduced by achieving pilot based 
estimation quality for reduced training symbol pay loads. 
With few known training symbols, such techniques can 
avoid convergence problems associated with blind tech- 
niques. 

This work was supponed by CoRe research grant Cam0-1CKl74 
and a Cal(IT)* fellowship. 

The channel estimation problem is further compli- 
cated in multi-antenna systems because, as the diver- 
sity of the MlMO system increases, the SNR(per hit) re- 
quired to achieve the same system performance(in BER 
terms) decreases. The S N R  at each antenna is even lower. 
For example, an m = 4 orthogonal canier system operat- 
ing at hit error probability P, = 2 x and diversity 
= 1,  requires an S N R  of 25 dB, while at diversity = 4, the 
working S N R  is 12 dB [l] and the SNR at each antenna 
could be as low as 6 db. 

Such low S N R  environments call for more training 
symbols, compromising the effective data rate. Hence, 
more robust channel estimation techniques which use 
training and blind data completely are attractive. 

Work on semi-blind techniques has been reponed 
earlier in [2] and [3] for the design of fractional semi- 
blind equalizers for multi-path channels. In [4] and [5]  
error bounds and asymptotic properties of blind and semi- 
blind techniques are analyzed. 

In this paper, we utilize the fact that the channel ma- 
trix H can be decomposed as H = W Q ,  where W is a 
whitening matrix and Q is unitary. W can he estimated 
employing exclusively all the output data. Training data 
has to be utilized to estimate only the Q matrix. This sort 
of an estimation has been used in an ICA based frame- 
work for source separation, where when the sources are 
uncorrelated gaussian, the channel matrix can he esti- 
mated blind up to a rotation matrix. More details on the 
source separation problem can be found in [6]. 

Such a two-step estimation procedure can potentially 
be superior because, 

The orthonormal matrix Q is parameterized by a 
significantly lesser number of parameters than the 
complete channel matrix H ,  and hence can he es- 
timated with greater accuracy from the limited pi- 
lot data. 

As the number of receive antennas T grows, num- 
ber of parameters (2rt) needed to be estimated for 
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H increases, while that (t') for Q remains con- 
stant. 

11. ALGORITHM 

Consider a MIMO channel with inputs drawn from t 
spatially and temporally independent sources represented 
by x = [q,zZ, ..., ztJT such that E ( x ( k ) x H ( l ) )  = 
bklo:1. The channel outputs are y are given as, 

y(k) = H x ( k )  + w ( k )  (1) 

where H is an T x t channel matrix and u is spatio- 
temporally uncorrelated noise. E ( ~ ( k ) w ( l ) ~ )  = bk&. 
A Rayleigh fading channel is considered and the channel 
is assumed constant over the transmission period. The 
output correlation matrix is 

R, = u:HHH + ugI = c;WWH + o ~ I  (2)  

Out of a total of N data transmissions for which the 
channeloutputs{y(l),y(2), ...,y( N)} areobserved,the 
pilot data { x ( l ) , x ( Z ) ,  ..., x ( L ) } i s  known for the initial 
L transmissions. Let Y = [y(l)y(2) ....y( L)] and X = 
[ x ( l ) x ( 2 )  ..... x ( L ) ] .  It is desired tocomputethe bestes- 
timate of H from the complete available data. 

We describe the conventional pilot based technique 
in the next section followed by the semi-blind algorithm. 

11.1. Training Sequence Based Estimation (TS): 

The least squares estimate of the complete channel ma- 
trix H using only pilot data is given as 

H T S  = Y X t  (3) 

where X t  is the Moore-Penmse pseudo-inverse of X .  
This is referred to as the training sequence (TS) tech- 
nique. 

11.2. Estimating the Q matrix, W known 

The techniques described in this section address the prob- 
lem of estimating only the optimal rotation matrix Q us- 
ing pilot data. The next section focuses on the problem 
of joint estimation of W and Q. Under the Gaussian 
noise assumption, the ML estimate of Q is obtained by 
minimizing 

IIY ~ WQXli; where QQ" = I  (4) 

11. 2. I ,  SVDl Technique: 

When the whitening matrix W is known (Le. when the 
estimate of W obtained from blind data is reasonably 

accurate), a simple algorithm for estimating Q can be 
found by modifying the cost function in (4) as, 

2 
rnin ljWtP ~ QXll, where QQ" = I 

The solution to this problem is addressed below. 

Lemma 1. The cost minimizing Q for the cost function 
in ( 5 )  is given as: 

(5) 
Q 

= VhU: where UhShVf = SVD[XYHWtH] 
(6) 

Proof: Given in [7]. 0 

where SVD denotes a Singular Value Decomposition. 

11.2.2. Rotation Optimization - 'RotOpt' 

Though the least squares cost function ( 5 )  results in a 
simple algorithm, the resulting estimate does not have 
any statistically optimal properties. The true 2-norm er- 
ror function to be minimized is (4). The RotOpt pro- 
cedure involves finding the optimal rotation matrix Q 
to this exact cost function. It can be canied out using 
any standard numerical optimization routine such as the 
gradient descent, lagrange multiplier optimization rou- 
tines. The Q matrix computed in (6) is used to initial- 
ize all such optimization routines. Since it is a close 
approximation to Q, any standard procedure is sure to 
yield good results. In the work described in the paper, 
we specifically employed MATLAB based optimization 
routines. 

11.2.3. SVDz Technique 

If the system allows a certain degree of freedom in de- 
sign, then the training symbols X = [ X I X Z  ... XL] may 
appropriately be chosen to simplify the expression in (4) 
and thus arrive at a solution of reduced complexity. The 
result stated below, describes one such design choice. 

Lemma 2. If XX" = 61 then the cost minimizing Q 
in (4) is given as 

Q = VU" where USVH = SVD[XYHW] (7) 

Matrices X which satisfy XX" = CI exist if mod- 
ulation format is BPSK or more generally, if the signal 
subspace contains an anti-podal subset and L = 2", n is 
a positive number. This choice of pilot signal alleviates 
the need for a numerical procedure to optimize the Ro- 
tOpt cost function and reduces it to an SVD computation 
without compromising performance. 
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11.3. Joint Estimation of W and Q 

This section addresses the problem of estimating W blindly, 
and also jointly optimal estimates of W and Q. 

11.3.1. Blind Estimurion of W 

The ML estimate of R, is given as 

R - - E Y i Y i  H 

i=l 
'-N 

where 

U,,,S,,,Vf=SVD - R,-uaI . (10) [i: { "  11 
u: and u: are assumed known. 

11.3.2. Total Optimizurion - 'TotOpt' 

This procedure builds on the above described procedures. 
After computing Q from the above procedures, the esti- 
mates of both W and Q can be refined using cost func- 
tions derived from the entire data set. Assuming data is 
Gaussian, the likelihood function for the total datacom- 
prisingofthetrainingdata { ( X I , Y I ) ,  ( X z , Y z )  ..., ( X L ,  
YL)}  and blind data {YL+]; _..., Y N )  is given as 

CCW, Q )  = -CI ( W )  - Cz(W,  9 )  (1 1) 

where Cl(W) = (N - L);  ln[det(WWH + ui1) ] -  

E:,,, y,H(lVWH + u:l)-lK, 

l L  
.Cz(W, Q) = 7 (5 - W Q X , l H ( q  - W Q X j )  

3 4  . 
(12) 

CI is a function of the blind data and C2 is a function 
of only the training data. This cost function can then be 
minimized for W with the earlier computed W as an ini- 
tial estimate. Successive iterations of RorOpt and TorOpt 
can be performed to progressively improves estimates of 
W and Q. 

As the data length N increases with pilot length L 
constant, the effect of CZ on the above expression weak- 
ens for the estimation of W .  Hence, for large data lengths, 
the likelihood expression increasingly looks like C1, and 
maximizing it expression wrto W reduces to the blind 
estimation described by (9). Computation of Q then re- 
duces to a minimization of C2 which is the cost function 
minimized by the RorOpt algorithm. 

111. BOUNDS AND PERFORMANCE ANALYSIS: 

In this section, the two competing techniques mentioned 
above are analyzed and compared through an analytical 
computation of performance bounds. The CR bound for 
the RotOpr technique, under the assumption of perfect 
knowledge of W is presented in the lemma below. 

111.1. CR Bound for estimation of Q :  

Theorem 1. If W is exactly known and X - N(0, ui1), 
the CR bound for the error of estimation of H = WQ 
fromthecompletedataset {x(l),x(2), ......., x(L), y(1) 
Y(%.....,Y(N)I is 

Q is any unbiased estimate of Q. Note that t2  is the 
number of parameters required to describe a complex 
t x t unitary matrix. 

111.2. Bound for estimation of M :  

Theorem 2. The error bound for estimation of the ma- 
trix H from the reference data {XI, ..., XL} is given as 

where 2rt, is the number of parameters required to 
describe the complex T x t channel matrix H and H is 
any estimate of H. 

From theorem (2) and theorem (1) it is evident that 
1. Under conditions of perfect knowledge of W ,  and 

T = t ,  rotation estimation is 3 dB more efficient 
than estimating H. 

2. As the number of receive antennas r increases, the 
error of estimation of H increases, while that of Q 
remains constant. 

III.3. Bound for estimation of W and Q: 

Relaxing the previous assumption of the availability of 
a precise estimate of W ,  a lower bound, based on a first 
order analysis, for the RofOpr procedure is given as: 

E(lIH - w l ; )  2 

I.ii is estimated using (9). yi i  = [R,]ii. It can be seen 
from the above expression that the performance of the 
semi-blind algorithm is sensitive to ilW11; (= llH11;) 
and decreases with SNR for high SNR. 
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N = 400, H i54X4, Total OQimization, SNR = 1368 
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Fig. 1. Expt[l]-Error Variance IIH - @ / I F  Vs Pilot 
Length L for the two competing techniques- TS and 
RotOpt, assuming the whitening matrix W is exactly 
known, N = 500. MPL = 00 
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Fig. 2. Expt[Z]-Error VaiancellH - BllF Vs Pilot 
Length L for TS and RotOpt in the case when W is esti- 
mated blind from output data yl, ..., y ~ .  N = 400. MPL 
= 20. 
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Fig. 3. Expt[2]-Error Variance IIH - f i l lF Vs Pilot 
Length L for TotOpt and TS techniques. N = 400. MPL 
= m. 

IV. SIMULATIONS 

In the simulations canied out, the elements of the chan- 
ne1 matrix were generated as independent unit variance 
circular Gaussian random variables. The input vectors 
x were drawn from t = 4 independent (temporally and 
spatially) 16-QAM sources, and for different values of T 

(= 4,8, 12), the number of receive antennas. Input S N R  
(= 3) at each source was % 14dB. 

The final error is calculated as llAd ~ 81lF. The 
error was averaged over multiple realizations (x30) in 
each experiment. The experiments are described below. 
Data length N was assumed equal to 400 samples unless 
specified otherwise. The variance of the estimate of dif- 
ferent techniques is computed and plotted as a function 
of the pilot length L. To evaluate the effectiveness of the 
methods developed, we define the following parameter. 

Definition 1. Maximum Pilot-Length (MPL)for a total 
number of data transmissions N is defined as the max- 
mum number of training symbols (L)  for which the Ro- 
tOpt technique outperforms the TS technique. 

a.? 
2 

The MPL is a compact representation of the range 
of pilot sequence lengths for which the developed tech- 
niques achieve better accuracy in the estimation of H 
compared to (3), training sequence based estimation. A 
high value of MPL indicates a wider range for which the 
developed methods are superior. 

Experiment 1. Perfect knowledge of W is assumed. Q 
is then estimated using exclusively the training samples 
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T x t I FADE (dB) I SVD I Rot-Opt 
4 x 4  1 0  1 0  I 20 

8 x 4  
8 x 4  -6 
8 x 4  -12 
1 2 x 4  -6 100 

Table 1. Table showing MPL Vs Fade, for several T ,  t. 
MPL = w implies RotOpr always performs better. 

and RorOpr technique. Fig. 1 shows the error variance of 
the RotOpt technique, contrasted to the pilot based one. 
As is seen, the rotation optimization technique performs 
approximately 3dB better than estimating the whole ma- 
trix H from pilot data (MPL = w). 

Experiment 2. No prior assumption was made on W 
and it was estimated directly from data. Fig. 2 shows the 
performance curves of both the estimation procedures as 
a function of the pilot length L. The RotOpt technique 
performs better for short pilot lengths (MPL % 20). 

Followed by the above procedure the TotOpt proce- 
dure is employed and optimum solution is found for the 
total likelihood cost function. MPL = w, and the tech- 
nique outperforms the TS method (Fig 3). 

Experiment 3. The performance of the above described 
techniques is investigated in a more severe fading envi- 
ronment. The matrix His scaled with a factor Po where 
Po 5 1.00 effectively reducing the S N R  by lOlog[P:] 
dB (attenuation of the fade). Fig. 4 shows the plot for 
the case when H is 8 x 4 and the fade is -6 dB. 

Table 1 gives the MPL for RotOpt and the SVDl 
technique for several values of T and Po. It is evident 
that the MPL increases progressively as 

Increasing signal attenuation (i.e. Deeper Fade) 

Increasing number of receive antennas ( r )  

V. CONCLUSIONS 

We have presented a semi-blind algorithm for the esti- 
mation of flat fading MIMO channel matrices, based on 
decomposing the matrix as the product of a whitening 
matrix and an unitaq matrix. Theoretical results have 
been given to demonstrate that this algorithm can result 
in up to 3dB improvement in performance over the con- 
ventional estimation algorithm. Simulation results have 
been presented and the procedure has been seen to per- 
form well in low SNR environments. 

2 
Fig. 4. Expt[3]-Error Variance lIH - f i l lF Vs Pilot 
Length L, for Fading Channels channel matrix H is 
8 x 4, Fade = -6dB, MPL = 80 
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