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ABSTRACT

We consider the problem of Semi-Blind (SB) channel esti-
mation for Multiple-Input Multiple-Output (MIMO) Finite
Impulse Response (FIR) channels. We motivate a Fisher In-
formation Matrix (FIM) based analysis of the semi-blind es-
timation problem and demonstrate that the semi-blind FIM
can be written as the sum of a blind FIM JB and train-
ing symbol FIM J t. We show that the blind FIM JB is
rank deficient and establish the minimum number of train-
ing symbols necessary to achieve regularity (full-rank) of
the FIM for identifiability. We also illustrate that an SB
scheme can potentially be very efficient compared to an ex-
clusively training based scheme since it estimates very few
un-constrained parameters. It is then demonstrated that the
rank deficiency of the FIM for an irreducible MIMO FIR
channel arises because of a unitary (rotation) matrix inde-
terminacy. Based on this analysis a semi-blind algorithm is
proposed for MIMO FIR channel estimation.

1. INTRODUCTION

MIMO (Multiple-Input Multiple-Output) communication sys-
tems have gained widespread popularity as technology so-
lutions for current and future wireless systems. The per-
formance of the designed MIMO decoders employed at the
receiver and precoders employed at the transmitter depend
critically on the accuracy of the available channel estimate.
Semi-blind (SB) techniques have been suggested in [1] for
channel estimation and trade off bandwidth efficiency for
computational simplicity. Our work is an attempt to shed
light on different aspects of SB estimation of a MIMO-
FIR channel. First, assuming that the source symbols are
Gaussian, we present the FIM for the SB estimation of a
MIMO-FIR channel. We prove that FIM is rank deficient by
at least the number of indeterminate parameters and demon-
strate a series of results on the rank properties of the SB
MIMO Gaussian FIM. Further, a novel contribution of our
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work has been to derive the change in the rank character-
istics of the FIM for each additional pilot symbol trans-
mitted and a result on the number of known (pilot) sym-
bols that need to be transmitted for regularity or a full rank
FIM. Also, the Gaussian covariance structure on the input
symbols as compared to the deterministic symbol situation
[2, 3] significantly changes the nature of the problem. The
transmitted symbols are no more a deterministic unknown
’burden’ but bear valuable statistical information. Thus the
number of unknowns no longer grows with the number of
transmitted blind symbols, making it possible to estimate
the channel with only few transmitted symbols. We then
motivate and utilize the irreducible-unitary decomposition
for SB channel estimation. In what follows, i ∈ m,n rep-
resents m ≤ i ≤ n; i, m, n ∈ N, rank (·) the Rank of a
matrix and N (·) represents the Nullspace of a matrix. We
formally set up the problem in the following section.

2. PROBLEM SETUP

Consider an L tap MIMO Channel. Let the system input
output relation be expressed as

y(k) =
L−1∑
i=0

H(i)x(k − i) + n(k) (1)

where y(k),x(k) are the kth received and transmitted sym-
bol vectors respectively. Let t, r be the number of transmit-
ters and receivers and therefore, y(k) ∈ C

r×1 and x(k) ∈
C

t×1. Each H(i) ∈ C
r×t, i ∈ 0, L − 1 is the MIMO chan-

nel matrix corresponding to the i-th lag. Also, let r > t,
i.e. the number of receivers is greater than the number of
transmitters. Let {xp(1),xp(2), . . . ,xp(Lt)} be a burst of
Lt transmitted training symbols. Let H ∈ C

r×Lt be defined
as

H � [H(0), H(1), . . . , H(L − 1)] . (2)

The input output relation can then be represented as Yp =
HXp + Np, where the block Toeplitz pilot matrix Xp ∈
C

Lt×Lt is constructed from the transmitted pilot symbols
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as

Xp �

⎡
⎢⎢⎢⎣

xp(1) xp(2) . . . xp(Lt)
0 xp(1) . . . xp(Lt − 1)
...

...
. . .

...
0 0 . . . xp(Lt − L + 1)

⎤
⎥⎥⎥⎦ . (3)

For the blind symbol transmissions, let us stack N received
symbol vectors to define the channel matrix H ∈ C

Nr×(L+N−1)t

as

H �

⎡
⎢⎢⎢⎣

H(0) H(1) H(2) . . . 0 . . .
0 H(0) H(1) . . . H(L − 1) . . .
0 0 H(0) . . . H(L − 2) . . .
...

...
...

. . .
...

. . .

⎤
⎥⎥⎥⎦
(4)

Let N ≥ L for desirable rank properties of H. The blind
transmission block length P is defined as P � N + L − 1.
The input-output relation can then be written as Y(k) =
HX (k) + N (k), where the C

Pt×1 stacked pilot symbol

matrix X (k) is defined as X (k) �
[
x ((k + 1)P )T

, . . . ,

x (kP + 1)T
]T

. The block received vector Y(k) is simi-

larly defined as Y(k) �
[
y ((k + 1)N)T

, . . . , y (kN + 1)T
]T

.

The MIMO transfer function of the FIR channel can now
be defined as H(z) =

∑L−1

i=0
H(i)z−i. An important no-

tion regarding such transfer functions is the concept of ir-
reducibility. A MIMO transfer function H(z) is said to be
irreducible if H(z) has full column rank for all z �= 0 (but
including z = ∞). It immediately follows that if H(z) is
irreducible, the leading coefficient matrix H(0) has full col-
umn rank (substitute z = ∞ in H(z)). Irreducibility of the
channel matrix is a key assumption for identifiability in sev-
eral blind channel estimation algorithms [2]. In this work,
we assume that the channel matrix H(z) is irreducible. Let
the transmitted blind data x(k) be spatio-temporally white,
i.e. E

{
x(k)x(l)H

}
= σ2

sδ(k, l)It×t and the normalized
source power σ2

s � 1. Hence the covariance of the block in-
put vector X (k) is given as RX � E

{X (i)X (i)H
}

= IP .
Next, we present insights in to the nature of the above esti-
mation problem.

3. SEMI-BLIND FISHER INFORMATION MATRIX
(FIM)

In this section, we consider some properties of the semi-
blind FIM and the resulting CRB matrix. We begin by de-
scribing some of the interesting properties of an FIM based
analysis. Let p

(
ω̄, g

(
θ̄
))

, be the pdf of the observation
vector ω̄, parameterized by θ̄ ∈ C

m×1. Given the log-
likelihood L (

ω̄, θ̄
)

� ln p
(
ω̄, g

(
θ̄
))

, the FIM Jθ̄ ∈ C
m×m

is given [2] as

Jθ̄ �
∂2L (

ω̄; θ̄
)

θ̄θ̄H
. (5)

Let g
(
θ̄
)

be a many-to-one mapping, i.e. g
(
θ̄
)

= f
(
θ̄, ξ̄

) ∀ξ̄ ∈
C

r×1 or in other words, the function g remains unchanged
as the parameter vector ξ̄ varies over an r dimensional con-
strained manifold. ξ̄ is then the un-constrained parame-
terization of the constraint manifold. The following lemma
relates the number of such parameters to the rank of the
Fisher Information Matrix (FIM).

Lemma 1. If g
(
θ̄
)

: C
n×1 → C

m×1 and g is a many-to-
one mapping, the FIM J

(
θ̄
) ∈ C

n×n is rank deficient and
in fact, rank

(
J

(
θ̄
))

= n − r.

Proof. Given in [4].

Thus, the rank of the FIM is deficient by precisely the
number of un-identifiable parameters as has been informally
stated in [3]. In our analysis we examine the rank of the
semi-blind FIM for several different cases and derive in-
sights in to the nature of the estimation problem.

3.1. Semi-Blind Parameter Formulation

We now consider the FIM for the estimation of the channel
matrix H. Hence let us define the parameter vector to be es-
timated θH ∈ C

2Lrt×1 by stacking the complex parameter
vector and its conjugate as suggested in [5] as

θH �

⎡
⎢⎢⎢⎣

θH(0)

θH(1)

...
θH(L−1)

⎤
⎥⎥⎥⎦ , (6)

where θH(i) �
[
vec (H(i))T

, vec (H(i)∗)T
]T

∈ C
2rt×1.

In what follows k ∈ 0, L − 1, i ∈ 1, rt. Observe also that
θ∗H(2krt+i) = θH ((2k + 1)rt + i). Let Lb blocks of blind
symbols X (p), p ∈ 1, Lb be transmitted. In addition, let the
input blind symbol vectors x(l), l ∈ Lt + 1, PLb + Lt be
Gaussian. Then, RY , the output correlation matrix is given
as RY � E

{Y(l)Y(l)H
}

= HHH + σ2

nI, where Ry ∈
C

rN×rN . The log-likelihood expression for the semi-blind
scenario described above is given as L (Y; θH) = Lb + Lt,
where the Lb, the Gaussian log-likelihood of the blind sym-
bols is given as

Lb � −
Lb∑

k=1

tr
(Y(k)HR−1

Y Y(k)
) − Lb ln detRY , (7)

and Lt, the least-squares log-likelihood of the training part
is given as

Lt =
1
σ2

n

Lt∑
i=1

∥∥∥∥∥∥yp(i) −
L−1∑
j=0

H(j)xp(i − j)

∥∥∥∥∥∥
2

. (8)
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Hence, the FIM for the sum likelihood is given as JθH =
JB + J t, where JB , J t ∈ C

2rtL×2rtL are the FIMs for the
blind and training symbols bursts respectively. Let the block
Toeplitz parameter derivative matrix E(k) ∈ C

Nr×(L+N−1)t

be defined employing complex derivatives as E(krt + i) �
∂H

∂θ2krt+i
H

. From the results for the Fisher information matrix

of a Gaussian process, JB is given as

JB
2krt+i,2lrt+j

Lb
=

(
JB

(2l+1)rt+j,(2k+1)rt+i

Lb

)∗

= tr
(
E(krt + i)HHR−1

Y HE(lrt + j)HR−1

Y
)

JB
2krt+i,(2l+1)rt+j

Lb
=

(
JB

(2l+1)rt+j,2krt+i

Lb

)∗

= tr
(E(krt + i)HHR−1

Y E(lrt + j)HHR−1

Y
)

where JB
k,l denotes its (k, l)th element. We have the follow-

ing result on the rank of the blind FIM for the MIMO FIR
channel.

Theorem 1. The rank of the blind FIM is given as

rank
(
JB

) ≤ 2rtL − t2. (9)

In fact, if H(z) is irreducible, a basis for the t2×1 nullspace
N (JB) is given by U (H) as

U (H) �
[
U(H(0))T , U(H(1))T , . . . , U(H(L))T

]T

(10)
where the matrix function U (H) : C

r×t → C
2rt×t2 for the

matrix H = [h1,h2, . . . ,ht] is defined as

U (H) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h∗
2

0 −h∗
3

. . . −h∗
1

0 . . .
0 h∗

1
0 . . . 0 −h∗

2
. . .

0 0 0 . . . 0 0 . . .
...

...
...

. . .
...

...
. . .

0 0 0 . . . 0 0 . . .
0 h2 0 . . . h1 0 . . .
h1 0 0 . . . 0 h2 . . .
...

...
...

. . .
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11)

Proof. Given in [4].

This has significant implications for estimation. As r, L
increase, the number of parameters in the system that needs
to be identified increases many fold (2rtL) but the num-
ber of parameters that cannot be identified from blind data
remains fixed at t2 implying that a wealth of data can be
identified without any training. Since the coefficients H(z)
come from random fading channels, with high probability,

the rank upper bound holds with equality and hence, for
improving the clarity of presentation, we drop the ’≤’ sign
and assume that generally the rank upper bound holds with
equality.

Recall that {xp(1),xp(2), . . . ,xp(Lt)} are the Lt trans-
mitted pilot symbols. Then, the FIM of the training sym-
bols J t is given as, J t =

∑Lt

i=1
J t (i), where, J t (i) is

the FIM contribution from the ith pilot symbol transmis-
sion. Given complex vectors in C

t×1, let the matrix func-
tion V (i, j) :

(
C

t×1, Ct×1
) → C

2rt×2rt be defined as

iVj �
[

xp(i)xp(j)H ⊗ Ir 0
0 xp(i)∗xp(j)T ⊗ Ir

]
(12)

and iVj = 02rt×2rt if either i or j is less than or equal to
0. After some manipulations, it can be shown that the FIM
contribution J t(i) ∈ C

2rtL×2rtL is given as

J t(i) =
1
σ2

n

⎡
⎢⎢⎢⎣

iVi
iVi−1 . . . iVi−L+1

i−1Vi
i−1Vi−1 . . . i−1Vi−L+1

...
...

. . .
...

i−L+1Vi
i−L+1Vi−1 . . . i−L+1Vi−L+1

⎤
⎥⎥⎥⎦ .

(13)
The following result gives the rank of the sum (training +
blind) FIM.

Theorem 2. The rank of the sum (training + blind) FIM
JθH is given as

rank (JθH) = 2rtL − t2 +
(
2tLt − Lt

2
)
, 0 ≤ Lt ≤ t

(14)
where Lt is the number of pilot symbols transmitted.

Proof. See Appendix.

From the above result, one can then obtain a lower bound
for the minimum number of training symbols necessary to
achieve regularity or a full rank FIM JθH . This result is
stated below.

Lemma 2. The number of training symbol transmissions Lt

should at least equal the number of transmit antennas t, for
the the FIM JθH to be full rank.

Proof. It is easy to see from (14), that for Lt = t, rank (JθH) =
2rtLt or full rank.

Thus by the addition of t pilot symbols, the system be-
comes completely identifiable which incidentally is also the
minimum number of training symbols needed for least-squares
pilot based estimation. What then is the advantage of using
a semi-blind technique? SB techniques can yield a far lesser
MSE of estimation than an exclusively pilot based scheme
as illustrated by the following result.
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Theorem 3. Let J t = Lt

σ2
n
I2rtL, which is achieved by an or-

thogonal pilot sequence as can be seen from (13). Then, as
the number of blind symbol transmissions increases (Lb →
∞), the Semi-Blind CRB JθH

−1 approaches the CRB for the
exclusive estimation of the t2 un-constrained parameters,

lim
Lb→∞

E
{
‖H − H‖2

F

}
≥ JθH

−1 =
(

σ2

n

2Lt

)
t2 (15)

Proof. Given the fact that J t = Lt

σ2
n
I2rtL, from (??), the

semi-blind FIM can be expressed as

J(θH) =
Lt

σ2
n

I2rtL×2rtL + J̃B , (16)

where JB

(
θ̄
)

is the blind FIM corresponding to a single
observed blind data Y . From theorem 1, JB

(
θ̄
)

is rank de-
ficient and in fact rank

(
JB

(
θ̄
))

= 2rt− t2. Let the eigen-
decomposition of JB be given as JB

(
θ̄
)

= EBΛBEB
H ,

where Λ ∈ D2rt−t2 and D denotes the space of diagonal
matrices. Then,

J (θH) =
Lt

σ2
n

[
E⊥

B , EB

] [
E⊥

B , EB

]H
+ EBΛBEH

B

=
[
EB , E⊥

B

] [
Lt

σ2
n
I + ΛB 0
0 Lt

σ2
n
I

] [
EB , E⊥

B

]H

Hence the CRB J−1 (θH) is given as

[
EB , E⊥

B

]
⎡
⎣

(
Lt

σ2
n
I + ΛB

)−1

0

0 σ2
n

Lt
I

⎤
⎦ [

EB , E⊥
B

]H

Therefore, as the number of blind symbols Lb → ∞ ⇒
ΛB → ∞, the semi-blind bound approaches the constrained
bound given as

lim
N→∞

J−1 (θH) =
σ2

n

Lt
E⊥

BE⊥
B

H
(17)

This expression is similar to the one derived in [6]. In fact,
the MSE is clearly seen to be given as

E
{∥∥∥θ̂H − θH

∥∥∥2

F

}
≥ σ2

n

Lt
tr

(
E⊥

BE⊥
B

H
)

⇒ 2
(

E
{∥∥∥Ĥ − H

∥∥∥2

F

})
≥ σ2

n

Lt
tr

(
E⊥

BE⊥
B

H
)

E
{∥∥∥Ĥ − H

∥∥∥2

F

}
≥ 1

2
σ2

n

Lt

(
2rt − (

2rt − t2
))

=
σ2

nt2

2Lt
, (18)

which is the constrained bound for the estimation of the
MIMO channel matrix H .

Thus the MSE of estimation of the channel matrix H
with the aid of blind information, is directly proportional to
t2 while the MSE of estimation using exclusively pilot sym-
bols is proportional to 2rtL the total number of real parame-

ters, given as
(

σ2
n

2Lt

)
2rtL. Hence, the SB MSE is lower by

a factor 2
(

r
t

)
L and potentially be very efficient compared

to blind schemes.

4. SEMI-BLIND ESTIMATION ALGORITHMS

As shown above, the SB problem involves identifying t2

parameters from the training data. These t2 parameters cor-
respond to a unitary matrix as illustrated below.

Lemma 3. Let H(z) ∈ C
r×t(z) be the r × t irreducible

channel transfer matrix. Let the input output system model
be as shown in (2). Then, H(z) can be identified up to a uni-
tary matrix from the output second order statistics of data.

The above subspace based result can be found in [7].
From the above result, the matrices W (i), i ∈ 0, L − 1
can be estimated blind from the correlation lags Ry(j), j ∈
0, L − 1 and a scheme based on designing multiple delay
linear predictors is given in [8] (Set na = 0, d = nb = L−1
and it follows that F̃i = W (i)). It thus remains to compute
the unitary matrix Q ∈ C

t×t from pilot symbols. There-
fore H ∈ C

r×Lt can be written as HW
(
IL ⊗ QH

)
, where

W � [W (1), W (2), . . . , W (L − 1)]. In the next section,
we present SB algorithms.

4.1. Orthogonal Pilot ML (OPML) for Q Estimation:

We now describe a procedure to estimate the unitary ma-
trix Q from an orthogonal pilot symbol sequence Xp. Let
Xp(i), i ∈ 0, L − 1 be defined as

Xp(i) � [xp(L − i),xp(L − i + 1), . . . ,xp(Lt − i)] .

From (3), Xp =
[
Xp(0)T , Xp(1)T , . . . , Xp(L − 1)T

]T
. The

least squares cost function for the constrained estimation of
the unitary matrix Q can then be written as

min

∥∥∥∥∥Yp −
L−1∑
i=0

W (i)QHXp(i)

∥∥∥∥∥
2

, with QQH = It.

Let the pilot matrix Xp be orthogonal, i.e. XpX
H
p = LtI.

The cost minimizing Q is then given as

Q̂ = UV H , where UΣV H = SVD

(
L−1∑
i=0

X(i)Y HW (i)

)
.

Proof follows from an extension of the result in [5]. Finally,
Ĥ is given as Ĥ � WQ̂H . An orthogonal pilot in the con-
text of MIMO FIR channels can be constructed as shown
in [9] by employing the Paley Hadamard orthogonal matrix
structure.
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Figure 1: MSE of Estimation of 4 × 2 with L = 2 taps.

5. SIMULATION RESULTS

We consider an L = 2 tap, r = 4, t = 2 i.e. 4 × 2
MIMO FIR channel. Each of the elements of H is gener-
ated as a zero-mean circularly symmetric complex Gaussian
random variable of unit variance. The orthogonal pilot se-
quence is constructed by employing a size 20 × 20 Paley
Hadamard matrix. In Fig.1.- we plot the MSE vs SNR when
the whitening matrix W (z) is estimated from PLb = 1000, 5000
blind data symbols. For comparison we also plot the CRB
given by (15) and also the MSE of estimation with the ge-
nie assisted case of perfect knowledge of W (z). The MSE
progressively decreases towards the CRB as the number of
blind data symbols increases and as illustrated in theorem
3, SB estimation error is 10 log

(
32

4

)
= 9dB lower than the

training based scheme.

6. CONCLUSION

In this work we have investigated the rank properties of the
FIM of a MIMO FIR channel and demonstrated that at least
t pilot symbol transmissions are necessary to achieve a full
rank FIM for an L tap r × t (r ≥ t) channel. An irre-
ducible channel transfer function H(z) can be decomposed
as H(z) = W (z)QH , where W (z) can be estimated from
the blind data alone. Constrained estimation schemes have
been presented to estimate the unitary matrix Q from pilot
symbols. Simulation results demonstrate the performance
of the proposed scheme.
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