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I. COMPLEXITY ANALYSIS

The per EM complexity for each block of the proposed P-HBKF and D-HBKF schemes are
determined as follows. Table I presents the complexities of the various steps in the P-HBKF
scheme for estimation of the sparse channel h,, using the Algorithm 1 described in the manuscript.
The complexities of the various intermediate steps in the joint estimation of the sparse channel
h, and data detection ﬁ,(jzl(m) in the D-HBKF technique are similarly given in Table II. The

dominant terms in each Table are presented in red color.



TABLE I: Computational Complexity of P-HBKF Technique
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TABLE II: Computational Complexity of D-HBKF Technique

Steps in D-HBKF

Multiplications

Additions

Computation of Y5 ,,—1

using Eq.(73)
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Fig. 1: Pilot pattern for the proposed OSTBC MIMO-OFDM systems
II. DERIVATION OF 2D-MMSE
Let us consider the pilot pattern of the proposed OSTBC MIMO-OFDM system, as shown in

Figure 1. The pilot matrix Y, (m) € CNe*Ne received in the nth transmission block (TB) and

the mth subcarrier is given by
Yo (m) = Hy(m)X,(m) + W, (m), (D

where H,(m) € CVe*N1 and X,,(m) € CNr*Ne denote the MIMO CFR and the OSTBC
pilot codeword, respectively, and W, (m) € C¥2*Ne denotes the AWGN matrix. Note that an
OSTBC pilot codeword X,,(m) is comprised of N, time slots. The vectorized system model

corresponding to (1) is obtained as

Ya(m) = vec(Yy(m))

= (Xi(m)@1Ly,) hy(m)+w,(m), )

(. S

&, (m)ecCNRN) X (NRNT)



where h,,(m) = vec[H,,(m)] € CWWV&NT)x1 denotes the vectorized CFR and w,,(m) = vec[W,,(m)].
Let {k1, ko, ..., kn,} denote the set of indices of the pilot subcarriers. The channel estimation

model for the nth TB is obtained by stacking all the pilot outputs as

yn(k’l) @n(k)l) 0 ce 0 hn(k1> Wn(kl)
_yn(kNP>_ L 0 0 cee q)n(kNP)_ _hn(kNP>_ _Wn(kNP)_
yne(C(N;TVCNP)Xl 32 hnE(C(N;]rVTNP)XI VX

Furthermore, stacking y,,V 1 < n < R, the equivalent pilot-based channel estimation model

corresponding to all the R TBs is obtained as

-Y1- -‘1)1 0 P 0 | -hl- _Wl-
Yo 0 @2 . 0 h2 Wo
= -+ ,
_YR_ L 0 0 e (I)R_ _hR_ _WR_
~ TV v
yeC(NRNeNpR)x1 P heC(NRNTNpR)x1 W
=y =®h+w. €))

Let the vectorized CFR h,, € C(NaNrN)x1 corresponding to the pilot and data subcarrier locations

in the nth TB be defined as
b, = [hZ(1),h%(2),...,hT(N)]". (5)

Similarly, the vectorized CFR h € CVeNrNR)X1 corresponding to the pilot and data subcarrier

locations for the entire estimation block can be defined as

" CT LT =7

h:[hl,hQ,...,hR} . 6)
The 2D-MMSE estimate of the overall CFR h is obtained as [1]

h = Cy, (7)



where C € CWrNrNE)X(NrNeNpR) denotes the linear estimation matrix. By exploiting the

orthogonality principle, we have:
E[(ﬁ—ﬁ) yH} :E[(Cy—ﬁ> yH} —0, ®)
which derives the estimation matrix C as

C=R; R, 9)

vy’
where R, = E [yy”] € CWrNeNeR)x(NeNeNrR) denotes the auto-correlation matrix of the
received pilot output y and R;, = E [flyH] € CWrNrNR)x(NrNeNpR) represents the cross-
correlation matrix of the CFR vector h and the received pilot output y. Using the notations

above, the 2D-MMSE estimate is derived as
h=R; R, y. (10)

Assuming the samples of the noise vector w to be independent and identically distributed with

power o2, the auto-correlation matrix R, can be further simplified to
Ry, =E [yyH}
= &R, ®7 + 021, (11)

where Ry, = E [hh] € CWrNrNeR)x(NeNrNeR)- denotes the auto-correlation matrix of the

CFR vector h. Similarly, the cross-correlation matrix R;, can be obtained as
R;, =E [flyH ]
=R;,®", (12)

where the matrix R;;, = E [ﬁhH ] € CWrNrNR)(NrNTNPR) denotes the crosscorrelation of the
CFR vectors h and h. The correlation matrix R, can be derived as follows.
The CFR vector h can be written in terms of its composite vectors h,(k;),1 <n < R, 1 <

1 < Np, as
h = [Bf (ky)... W7 (kn,) DY (k). D] (kny) oo WG (Ry) . hE(Ry,)] . (13)

Thus, the auto-correlation matrix Ry, = E [hhH} can be computed from each component

correlation matrix Ry, k;mok; € CWrNT)x(NeNT) defined as

R’hml,ki,nz,k’j =K [hnl (k’,)hg(kﬁ])] . (14)



Similarly, the quantity Ry, k;n,%, can also be used to compute the crosscorrelation matrix
R;, =E [fth } The matrix Ry, k; .00k, 18 €valuated next using the power delay profile of the
L-tap channel and the associated AR-1 model.

Let H,, (1) € CNr*N7 denote the time-domain /th MIMO channel tap in TB n;. The associated

CFR matrix H,,, (k;), which corresponds to the subcarrier index k; in TB n4, can be expressed

as
H,, (k;) = [H,,(0) H,, (1) ... H,, (L —1)] (£, @ In,), (15)
H,, G(C]G;x(LNT)
. 2rk; on(L-1)k; 1T .
where the truncated Fourier vector obeys f, = |1,e™/ v ..., e/ ¥~ } € C¥*L. Defining

the vectorized CIR as h,,, = vec(H,,) € CENrNT)X1 the relationship between the vectorized

CFR h,, (k;) and h,,, can be obtained as

hy,, (ki) = vec[Hy, (k;)]

where F,, = [l ® Iy, n,|. Let hy, (1) = vec (H,, (1)) denote the vectorized Ith tap and o} de-
note the average power of each element of h,,, (1). This implies that E [h,, ()b (1)] = 671y, ;.
Furthermore, the auto-correlation of the vectorized CIR h,,, = [h? (0),hf (2),...,h! (L —1)] ’

is derived as

-U%INRNT 0
_ 0 o021 o 0
E[h,h7] =] 2 _ = (P ® Inyn,) s (17)
N 0 0 e U%—IINRNT_

where the matrix P € RY*" is a diagonal matrix comprised of the average power {crlz}lL;O1 on
its main diagonal. Furthermore, following the AR-1 model for the time-domain evolution of the

channel, which is given as

Bn - pl_ln—l + v - PQ{’m (18)

one can also derive the cross-correlation E [h, h’ | as

n17"ng

E [h,,hf] = o= (P & In,n,.) - (19)

N1 "ng



Using the results from (16) and (19), the cross-correlation matrix Ry, ;; k; n,.k; Of the vectorized

CFRs h,, (k;) and h,,(k;), as defined in (14), can be derived as
Rh:nl,kiyn%kj =K [hnl (kl>h{z{2 (k])}

=FE [h,,h!

1" " ng

JFy,

= p|n1—n2|Fki (P ®Inyn,) FkH]

(20)

Using the result derived in (20), the closed-form expressions of Ry, and Rj, can be evaluated

as below. The auto-correlation matrix Ry, can be derived as

Ry =J, (F15FH> ,

where we have P = (P ® I, v,). The matrices J, and F are defined as

1 p

1

Jp = p .
_prl pr2

R—1]

p

pR—2

1

Similarly, the cross-correlation matrix Rj, can be written as

Rﬁh = Jp (29 <F13FH> ,

where the matrix F is defined as

s
Il

Finally, the 2D-MMSE estimate is obtained as

Fy
Fy

Fy

h = R;, ®" (BRy®" +021) 'y

_ (Jp ® <F15FH>) & (@ (Jp ® (FPFH)> 1 4 03,1) 'y,
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