Technical Report: Sparse Doubly-Selective

Channel Estimation Techniques for OSTBC
MIMO-OFDM Systems: A Hierarchical
Bayesian Kalman Filter Based Approach

Suraj Srivastava, Amrita Mishra, Aditya K. Jagannatham and Lajos Hanzo

I. Complexity Analysis

The per EM complexity for each block of the proposed P-HBKF and D-HBKF schemes are determined as follows. Table I presents the complexities of the various steps in the P-HBKF scheme for estimation of the sparse channel \mathbf{h}_{n} using the Algorithm 1 described in the manuscript. The complexities of the various intermediate steps in the joint estimation of the sparse channel \mathbf{h}_{n} and data detection $\widehat{\mathbf{a}}_{k, n}^{(i)}(m)$ in the D-HBKF technique are similarly given in Table II. The dominant terms in each Table are presented in red color.

TABLE I: Computational Complexity of P-HBKF Technique

Steps in P-HBKF	Multiplications	Additions
Computation of $\widehat{\mathbf{y}}_{\mathcal{P}, n \mid n-1}$ using Eq.(73)	$L N_{R} N_{T}+N_{P} N_{c} N_{R}^{3} L^{2} N_{T}^{2}$	$N_{P} N_{c} N_{R}^{3} L^{2} N_{T}^{2}-N_{P} N_{c} N_{R}^{2} L N_{T}$
Computation of $\mathbf{y}_{\mathcal{P}, e, n}$ using Eq.(76)	-	
Computation of $\boldsymbol{\Sigma}_{n}^{(i)}$ in E-Step	$L^{2} N_{R}^{3} N_{T}^{2} N_{P} N_{c}+\frac{1}{2} L^{3} N_{R}^{3} N_{T}^{3}$	
$+\frac{3}{2} L^{2} N_{R}^{2} N_{T}^{2}+L N_{R} N_{T}$	$N_{P} N_{c} N_{R}$	
Computation of $\boldsymbol{\mu}_{n}^{(i)}$ in E-Step	$L^{2} N_{R}^{3} N_{T}^{2} N_{P} N_{c}+L N_{R}^{2} N_{T} N_{P} N_{c}$	$L^{2} N_{R}^{3} N_{T}^{2} N_{P} N_{c}+\frac{1}{2} L^{3} N_{R}^{3} N_{T}^{3}$
Computation of $\widehat{\boldsymbol{\Gamma}}_{n}^{(i)}$ in M-Step	$L^{2} N_{R}^{2} N_{T}^{2}+L N_{R} N_{T}$	$-\frac{3}{2} L^{2} N_{R}^{2} N_{T}^{2}+L N_{R} N_{T}$
Computation of $\mathbf{M}_{n \mid n-1}$ using Eq.(74)	$L^{2} N_{R}^{3} N_{T}^{2} N_{P} N_{c}-L N_{R} N_{T}$	
Computation of \mathbf{K}_{n} using Eq.(75)	$2 N_{P} N_{c} N_{R}^{3} L^{2} N_{T}^{2}+2 N_{P}^{2} N_{c}^{2} N_{R}^{3} L N_{T}$	$2 L N_{R} N_{T}-2 L$
Computation of $\widehat{\mathbf{h}}_{n \mid n}$ using Eq.(77)	$L N_{R}^{2} N_{T} N_{P} N_{c}$	$2 N_{P}^{2} N_{c} N_{R}^{3} L^{2} N_{T}^{2}-2 N_{P} N_{c} N_{R}^{2} L N_{T}^{3} L N_{T}-L N_{T} N_{P} N_{c} N_{R}^{2}$
Computation of $\mathbf{M}_{n \mid n}$ using Eq.(78)	$N_{P} N_{c} N_{R}-N_{P}^{2} N_{c}^{2} N_{R}^{2}$	

TABLE II: Computational Complexity of D-HBKF Technique

Steps in D-HBKF	Multiplications	Additions
$\begin{aligned} & \text { Computation of } \widehat{\mathbf{y}}_{\mathcal{B}, n \mid n-1} \\ & \text { using Eq.(73) } \end{aligned}$	$L N_{R} N_{T}+K N N_{c} N_{R}^{3} L^{2} N_{T}^{2}$	$K N N_{c} N_{R}^{3} L^{2} N_{T}^{2}-K N N_{c} N_{R}^{2} L N_{T}$
$\begin{aligned} & \text { Computation of } \mathbf{y}_{\mathcal{B}, e, n} \\ & \text { using Eq.(76) } \end{aligned}$	-	$K N N_{c} N_{R}$
Computation of $\boldsymbol{\Sigma}_{\mathcal{B}, n}^{(i)}$ in E-Step	$\begin{aligned} & L^{2} N_{R}^{3} N_{T}^{2} K N N_{c}+\frac{1}{2} L^{3} N_{R}^{3} N_{T}^{3} \\ & \quad+\frac{3}{2} L^{2} N_{R}^{2} N_{T}^{2}+L N_{R} N_{T} \end{aligned}$	$\begin{array}{r} L^{2} N_{R}^{3} N_{T}^{2} K N N_{c}+\frac{1}{2} L^{3} N_{R}^{3} N_{T}^{3} \\ \quad-\frac{3}{2} L^{2} N_{R}^{2} N_{T}^{2}+L N_{R} N_{T} \end{array}$
Computation of $\boldsymbol{\mu}_{\mathcal{B}, n}^{(i)}$ in E-Step	$L^{2} N_{R}^{3} N_{T}^{2} K N N_{c}+L N_{R}^{2} N_{T} K N N_{c}$	$L^{2} N_{R}^{3} N_{T}^{2} K N N_{c}-L N_{R} N_{T}$
Computation of $\widehat{\boldsymbol{\Gamma}}_{n}^{(i)}$ in M-Step	$L N_{R} N_{T}+2 L$	$2 L N_{R} N_{T}-2 L$
Computation of $\mathbf{M}_{n \mid n-1}^{(i)}$ asing Eq.(74)	$L^{2} N_{R}^{2} N_{T}^{2}+L N_{R} N_{T}$	$L N_{R} N_{T}$
$\begin{aligned} & \text { Computation of } \mathbf{K}_{n}^{(i)} \\ & \text { using Eq.(75) } \end{aligned}$	$2 K N N_{c} N_{R}^{3} L^{2} N_{T}^{2}+2 K^{2} N^{2} N_{c}^{2} N_{R}^{3} L N_{T}$	$\begin{array}{r} 2 K N N_{c} N_{R}^{3} L^{2} N_{T}^{2}-2 K N N_{c} N_{R}^{2} L N_{T} \\ 2 K^{2} N^{2} N_{c}^{2} N_{R}^{3} L N_{T}-L N_{T} K N N_{c} N_{R}^{2} \\ K N N_{c} N_{R}-K^{2} N^{2} N_{c}^{2} N_{R}^{2} \end{array}$
$\begin{array}{\|l} \hline \text { Computation of } \widehat{\mathbf{h}}_{n \mid n}^{(i)} \\ \text { using Eq.(77) } \end{array}$	$L N_{R}^{2} N_{T} K N N_{c}$	$L N_{R}^{2} N_{T} K N N_{c}$
$\begin{aligned} & \hline \text { Computation of } \mathbf{M}_{n \mid n}^{(i)} \\ & \text { using Eq.(78) } \end{aligned}$	$L^{2} N_{R}^{3} N_{T}^{2} K N N_{c}+L^{3} N_{R}^{3} N_{T}^{3}$	$\begin{array}{r} \hline L^{2} N_{R}^{3} N_{T}^{2} K N N_{c}+L^{3} N_{R}^{3} N_{T}^{3} \\ L N_{R} N_{T}-2 L^{2} N_{R}^{2} N_{T}^{2} \end{array}$
Computation of $\widehat{\mathcal{H}}_{n}^{(i)}$ using Eq.(64)	$N N_{R} N_{T} L$	$N N_{T} N_{R}(L-1)$
$\begin{aligned} & \text { Computation of } \widetilde{\mathbf{M}}_{n}^{(i)} \\ & \text { in Eq.(72) } \end{aligned}$	$N_{T}^{3} N_{R}^{3} N L^{2}+N_{T}^{3} N_{R}^{3} N^{2} L$	$\begin{aligned} & N_{R}^{3} N_{T}^{3} L^{2} N+N_{T}^{3} N_{R}^{3} N^{2} L \\ & -N_{R}^{2} N_{T}^{2} L N-N_{R}^{2} N_{T}^{2} N^{2} \end{aligned}$
Computation of $\zeta_{n}^{(i)}(m)$ using Eq.(72)	$N_{T} N_{R} N$	$2 N_{T} N_{R} N-2 N$
Computation of $\mathcal{C}_{n}(m)$ using Eq.(65)	$2 N_{R} N_{T} N_{c} N_{s} N$	$2 N_{R} N_{T} N_{c} N_{s} N+2 N_{R} N_{c} N_{s} N$
Computation of $\widehat{\mathbf{a}}_{k, n}^{(i)}(m)$ using Eq.(71)	$2 N_{s} N_{R} N_{c} K N+2 N_{s} K N$	$2 N_{s} N_{R} N_{c} K N-2 N_{s} K N$

Fig. 1: Pilot pattern for the proposed OSTBC MIMO-OFDM systems

II. Derivation of 2D-MMSE

Let us consider the pilot pattern of the proposed OSTBC MIMO-OFDM system, as shown in Figure 1. The pilot matrix $\mathbf{Y}_{n}(m) \in \mathbb{C}^{N_{R} \times N_{c}}$ received in the nth transmission block (TB) and the m th subcarrier is given by

$$
\begin{equation*}
\mathbf{Y}_{n}(m)=\mathbf{H}_{n}(m) \mathbf{X}_{n}(m)+\mathbf{W}_{n}(m) \tag{1}
\end{equation*}
$$

where $\mathbf{H}_{n}(m) \in \mathbb{C}^{N_{R} \times N_{T}}$ and $\mathbf{X}_{n}(m) \in \mathbb{C}^{N_{T} \times N_{c}}$ denote the MIMO CFR and the OSTBC pilot codeword, respectively, and $\mathbf{W}_{n}(m) \in \mathbb{C}^{N_{R} \times N_{c}}$ denotes the AWGN matrix. Note that an OSTBC pilot codeword $\mathbf{X}_{n}(m)$ is comprised of N_{c} time slots. The vectorized system model corresponding to (1) is obtained as

$$
\begin{align*}
\mathbf{y}_{n}(m) & =\operatorname{vec}\left(\mathbf{Y}_{n}(m)\right) \\
& =\underbrace{\left(\mathbf{X}_{n}^{T}(m) \otimes \mathbf{I}_{N_{R}}\right)}_{\boldsymbol{\Phi}_{n}(m) \in \mathbb{C}^{\left(N_{R} N_{c}\right) \times\left(N_{R} N_{T}\right)}} \mathbf{h}_{n}(m)+\mathbf{w}_{n}(m), \tag{2}
\end{align*}
$$

where $\mathbf{h}_{n}(m)=\operatorname{vec}\left[\mathbf{H}_{n}(m)\right] \in \mathbb{C}^{\left(N_{R} N_{T}\right) \times 1}$ denotes the vectorized CFR and $\mathbf{w}_{n}(m)=\operatorname{vec}\left[\mathbf{W}_{n}(m)\right]$. Let $\left\{k_{1}, k_{2}, \ldots, k_{N_{P}}\right\}$ denote the set of indices of the pilot subcarriers. The channel estimation model for the nth TB is obtained by stacking all the pilot outputs as

$$
\begin{gather*}
{\left[\begin{array}{c}
\mathbf{y}_{n}\left(k_{1}\right) \\
\mathbf{y}_{n}\left(k_{2}\right) \\
\vdots \\
\mathbf{y}_{n}\left(k_{N_{P}}\right)
\end{array}\right]}
\end{gather*} \underbrace{\left[\begin{array}{cccc}
\mathbf{\Phi}_{n}\left(k_{1}\right) & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \mathbf{\Phi}_{n}\left(k_{2}\right) & \ldots & \mathbf{0} \tag{3}\\
\vdots & \vdots & & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{\Phi}_{n}\left(k_{N_{P}}\right)
\end{array}\right]}_{\mathbf{y}_{n} \in \mathbb{C}^{\left(N_{R} N_{c} N_{P}\right) \times 1}} \underbrace{\left[\begin{array}{c}
\mathbf{h}_{n}\left(k_{1}\right) \times 1 \\
\mathbf{h}_{n}\left(k_{2}\right) \\
\vdots \\
\mathbf{h}_{n}\left(k_{N_{P}}\right)
\end{array}\right]}_{\mathbf{h}_{n} \in \mathbb{C}^{\left(N_{R} N_{T^{N}}\right.}}+\underbrace{\left[\begin{array}{c}
\mathbf{w}_{n}\left(k_{1}\right) \\
\mathbf{w}_{n}\left(k_{2}\right) \\
\vdots \\
\mathbf{w}_{n}\left(k_{N_{P}}\right)
\end{array}\right]}_{\mathbf{w}_{n}},
$$

Furthermore, stacking $\mathbf{y}_{n}, \forall 1 \leq n \leq R$, the equivalent pilot-based channel estimation model corresponding to all the R TBs is obtained as

$$
\begin{gather*}
\underbrace{\left[\begin{array}{c}
\mathbf{y}_{1} \\
\mathbf{y}_{2} \\
\vdots \\
\mathbf{y}_{R}
\end{array}\right]}_{\mathbf{y} \in \mathbb{C}^{\left(N_{R} N_{C} N_{P} R\right) \times 1}}=\underbrace{\left[\begin{array}{cccc}
\mathbf{\Phi}_{1} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Phi}_{2} & \ldots & \mathbf{0} \\
\vdots & \vdots & & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{\Phi}_{R}
\end{array}\right]}_{\mathbf{\Phi}} \underbrace{\left[\begin{array}{c}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\vdots \\
\mathbf{h}_{R}
\end{array}\right]}_{\left.\mathbf{h} \in \mathbb{C}^{\left(N_{R^{N_{T}}} N_{P}\right.}\right) \times 1}+\underbrace{\left[\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\vdots \\
\mathbf{w}_{R}
\end{array}\right]}_{\mathbf{w}}, \\
\Rightarrow \mathbf{y}=\mathbf{\Phi} \mathbf{h}+\mathbf{w} . \tag{4}
\end{gather*}
$$

Let the vectorized CFR $\tilde{\mathbf{h}}_{n} \in \mathbb{C}^{\left(N_{R} N_{T} N\right) \times 1}$ corresponding to the pilot and data subcarrier locations in the nth TB be defined as

$$
\begin{equation*}
\tilde{\mathbf{h}}_{n}=\left[\mathbf{h}_{n}^{T}(1), \mathbf{h}_{n}^{T}(2), \ldots, \mathbf{h}_{n}^{T}(N)\right]^{T} \tag{5}
\end{equation*}
$$

Similarly, the vectorized CFR $\tilde{\mathbf{h}} \in \mathbb{C}^{\left(N_{R} N_{T} N R\right) \times 1}$ corresponding to the pilot and data subcarrier locations for the entire estimation block can be defined as

$$
\begin{equation*}
\tilde{\mathbf{h}}=\left[\tilde{\mathbf{h}}_{1}^{T}, \tilde{\mathbf{h}}_{2}^{T}, \ldots, \tilde{\mathbf{h}}_{R}^{T}\right]^{T} . \tag{6}
\end{equation*}
$$

The 2D-MMSE estimate of the overall CFR $\tilde{\mathrm{h}}$ is obtained as [1]

$$
\begin{equation*}
\hat{\tilde{\mathrm{h}}}=\mathbf{C y} \tag{7}
\end{equation*}
$$

where $\mathbf{C} \in \mathbb{C}^{\left(N_{R} N_{T} N R\right) \times\left(N_{R} N_{c} N_{P} R\right)}$ denotes the linear estimation matrix. By exploiting the orthogonality principle, we have:

$$
\begin{equation*}
\mathbb{E}\left[(\hat{\tilde{\mathbf{h}}}-\tilde{\mathbf{h}}) \mathbf{y}^{H}\right]=\mathbb{E}\left[(\mathbf{C y}-\tilde{\mathbf{h}}) \mathbf{y}^{H}\right]=\mathbf{0} \tag{8}
\end{equation*}
$$

which derives the estimation matrix \mathbf{C} as

$$
\begin{equation*}
\mathbf{C}=\mathbf{R}_{\tilde{h} y} \mathbf{R}_{y y}^{-1} \tag{9}
\end{equation*}
$$

where $\mathbf{R}_{y y}=\mathbb{E}\left[\mathbf{y y}^{H}\right] \in \mathbb{C}^{\left(N_{R} N_{c} N_{P} R\right) \times\left(N_{R} N_{c} N_{P} R\right)}$ denotes the auto-correlation matrix of the received pilot output \mathbf{y} and $\mathbf{R}_{\tilde{h} y}=\mathbb{E}\left[\tilde{\mathbf{h}} \mathbf{y}^{H}\right] \in \mathbb{C}^{\left(N_{R} N_{T} N R\right) \times\left(N_{R} N_{c} N_{P} R\right)}$ represents the crosscorrelation matrix of the CFR vector $\tilde{\mathbf{h}}$ and the received pilot output \mathbf{y}. Using the notations above, the 2D-MMSE estimate is derived as

$$
\begin{equation*}
\hat{\tilde{\mathbf{h}}}=\mathbf{R}_{\tilde{h} y} \mathbf{R}_{y y}^{-1} \mathbf{y} . \tag{10}
\end{equation*}
$$

Assuming the samples of the noise vector w to be independent and identically distributed with power σ_{w}^{2}, the auto-correlation matrix $\mathbf{R}_{y y}$ can be further simplified to

$$
\begin{align*}
\mathbf{R}_{y y} & =\mathbb{E}\left[\mathbf{y} \mathbf{y}^{H}\right] \\
& =\boldsymbol{\Phi} \mathbf{R}_{h h} \boldsymbol{\Phi}^{H}+\sigma_{w}^{2} \mathbf{I} \tag{11}
\end{align*}
$$

where $\mathbf{R}_{h h}=\mathbb{E}\left[\mathbf{h h}^{H}\right] \in \mathbb{C}^{\left(N_{R} N_{T} N_{P} R\right) \times\left(N_{R} N_{T} N_{P} R\right)}$ denotes the auto-correlation matrix of the CFR vector \mathbf{h}. Similarly, the cross-correlation matrix $\mathbf{R}_{\tilde{h} y}$ can be obtained as

$$
\begin{align*}
\mathbf{R}_{\tilde{h} y} & =\mathbb{E}\left[\tilde{\mathbf{h}} \mathbf{y}^{H}\right] \\
& =\mathbf{R}_{\tilde{h} h} \boldsymbol{\Phi}^{H} \tag{12}
\end{align*}
$$

where the matrix $\mathbf{R}_{\tilde{h} h}=\mathbb{E}\left[\tilde{\mathbf{h}} \mathbf{h}^{H}\right] \in \mathbb{C}^{\left(N_{R} N_{T} N R\right) \times\left(N_{R} N_{T} N_{P} R\right)}$ denotes the crosscorrelation of the CFR vectors $\tilde{\mathbf{h}}$ and \mathbf{h}. The correlation matrix $\mathbf{R}_{h h}$ can be derived as follows.

The CFR vector \mathbf{h} can be written in terms of its composite vectors $\mathbf{h}_{n}\left(k_{i}\right), 1 \leq n \leq R, 1 \leq$ $i \leq N_{P}$, as

$$
\begin{equation*}
\mathbf{h}=\left[\mathbf{h}_{1}^{T}\left(k_{1}\right) \ldots \mathbf{h}_{1}^{T}\left(k_{N_{P}}\right) \mathbf{h}_{2}^{T}\left(k_{1}\right) \ldots \mathbf{h}_{2}^{T}\left(k_{N_{P}}\right) \ldots \ldots \mathbf{h}_{R}^{T}\left(k_{1}\right) \ldots \mathbf{h}_{R}^{T}\left(k_{N_{P}}\right)\right] . \tag{13}
\end{equation*}
$$

Thus, the auto-correlation matrix $\mathbf{R}_{h h}=\mathbb{E}\left[\mathbf{h h}^{H}\right]$ can be computed from each component correlation matrix $\mathbf{R}_{h, n_{1}, k_{i}, n_{2}, k_{j}} \in \mathbb{C}^{\left(N_{R} N_{T}\right) \times\left(N_{R} N_{T}\right)}$ defined as

$$
\begin{equation*}
\mathbf{R}_{h, n_{1}, k_{i}, n_{2}, k_{j}}=\mathbb{E}\left[\mathbf{h}_{n_{1}}\left(k_{i}\right) \mathbf{h}_{n_{2}}^{H}\left(k_{j}\right)\right] . \tag{14}
\end{equation*}
$$

Similarly, the quantity $\mathbf{R}_{h, n_{1}, k_{i}, n_{2}, k_{j}}$ can also be used to compute the crosscorrelation matrix $\mathbf{R}_{\tilde{h} h}=\mathbb{E}\left[\tilde{\mathbf{h}} \mathbf{h}^{H}\right]$. The matrix $\mathbf{R}_{h, n_{1}, k_{i}, n_{2}, k_{j}}$ is evaluated next using the power delay profile of the L-tap channel and the associated AR-1 model.

Let $\overline{\mathbf{H}}_{n_{1}}(l) \in \mathbb{C}^{N_{R} \times N_{T}}$ denote the time-domain l th MIMO channel tap in TB n_{1}. The associated CFR matrix $\mathbf{H}_{n_{1}}\left(k_{i}\right)$, which corresponds to the subcarrier index k_{i} in TB n_{1}, can be expressed as

$$
\begin{equation*}
\mathbf{H}_{n_{1}}\left(k_{i}\right)=\underbrace{\left[\overline{\mathbf{H}}_{n_{1}}(0) \overline{\mathbf{H}}_{n_{1}}(1) \ldots \overline{\mathbf{H}}_{n_{1}}(L-1)\right]}_{\overline{\mathbf{H}}_{n_{1}} \in \mathbb{C}^{N_{R} \times\left(L N_{T}\right)}}\left(\mathbf{f}_{k_{i}} \otimes \mathbf{I}_{N_{T}}\right), \tag{15}
\end{equation*}
$$

where the truncated Fourier vector obeys $\mathbf{f}_{k_{i}}=\left[1, e^{-j \frac{2 \pi k_{i}}{N}}, \ldots, e^{-j \frac{2 \pi(L-1) k_{i}}{N}}\right]^{T} \in \mathbb{C}^{L \times 1}$. Defining the vectorized CIR as $\overline{\mathbf{h}}_{n_{1}}=\operatorname{vec}\left(\overline{\mathbf{H}}_{n_{1}}\right) \in \mathbb{C}^{\left(L N_{R} N_{T}\right) \times 1}$, the relationship between the vectorized CFR $\mathbf{h}_{n_{1}}\left(k_{i}\right)$ and $\overline{\mathbf{h}}_{n_{1}}$ can be obtained as

$$
\begin{align*}
\mathbf{h}_{n_{1}}\left(k_{i}\right) & =\operatorname{vec}\left[\mathbf{H}_{n_{1}}\left(k_{i}\right)\right] \\
& =\mathbf{F}_{k_{i}} \overline{\mathbf{h}}_{n_{1}}, \tag{16}
\end{align*}
$$

where $\mathbf{F}_{k_{i}}=\left[\mathbf{f}_{k_{i}}^{T} \otimes \mathbf{I}_{N_{R} N_{T}}\right]$. Let $\overline{\mathbf{h}}_{n_{1}}(l)=\operatorname{vec}\left(\overline{\mathbf{H}}_{n_{1}}(l)\right)$ denote the vectorized l th tap and σ_{l}^{2} denote the average power of each element of $\overline{\mathbf{h}}_{n_{1}}(l)$. This implies that $\mathbb{E}\left[\overline{\mathbf{h}}_{n_{1}}(l) \overline{\mathbf{h}}_{n_{1}}^{H}(l)\right]=\sigma_{l}^{2} \mathbf{I}_{N_{R} N_{T}}$. Furthermore, the auto-correlation of the vectorized $\operatorname{CIR} \overline{\mathbf{h}}_{n_{1}}=\left[\overline{\mathbf{h}}_{n_{1}}^{T}(0), \overline{\mathbf{h}}_{n_{1}}^{T}(2), \ldots, \overline{\mathbf{h}}_{n_{1}}^{T}(L-1)\right]^{T}$, is derived as

$$
\mathbb{E}\left[\overline{\mathbf{h}}_{n_{1}} \overline{\mathbf{h}}_{n_{1}}^{H}\right]=\left[\begin{array}{cccc}
\sigma_{1}^{2} \mathbf{I}_{N_{R} N_{T}} & \mathbf{0} & \cdots & \mathbf{0} \tag{17}\\
\mathbf{0} & \sigma_{2}^{2} \mathbf{I}_{N_{R} N_{T}} & \cdots & \mathbf{0} \\
\vdots & \vdots & & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \sigma_{L-1}^{2} \mathbf{I}_{N_{R} N_{T}}
\end{array}\right]=\left(\mathbf{P} \otimes \mathbf{I}_{N_{R} N_{T}}\right)
$$

where the matrix $\mathbf{P} \in \mathbb{R}^{L \times L}$ is a diagonal matrix comprised of the average power $\left\{\sigma_{l}^{2}\right\}_{l=0}^{L-1}$ on its main diagonal. Furthermore, following the AR-1 model for the time-domain evolution of the channel, which is given as

$$
\begin{equation*}
\overline{\mathbf{h}}_{n}=\rho \overline{\mathbf{h}}_{n-1}+\sqrt{1-\rho^{2}} \overline{\mathbf{v}}_{n} \tag{18}
\end{equation*}
$$

one can also derive the cross-correlation $\mathbb{E}\left[\overline{\mathbf{h}}_{n_{1}} \overline{\mathbf{h}}_{n_{2}}^{H}\right]$ as

$$
\begin{equation*}
\mathbb{E}\left[\overline{\mathbf{h}}_{n_{1}} \overline{\mathbf{h}}_{n_{2}}^{H}\right]=\rho^{\left|n_{1}-n_{2}\right|}\left(\mathbf{P} \otimes \mathbf{I}_{N_{R} N_{T}}\right) . \tag{19}
\end{equation*}
$$

Using the results from (16) and (19), the cross-correlation matrix $\mathbf{R}_{h, n_{1}, k_{i}, n_{2}, k_{j}}$ of the vectorized CFRs $\mathbf{h}_{n_{1}}\left(k_{i}\right)$ and $\mathbf{h}_{n_{2}}\left(k_{j}\right)$, as defined in (14), can be derived as

$$
\begin{align*}
\mathbf{R}_{h, n_{1}, k_{i}, n_{2}, k_{j}} & =\mathbb{E}\left[\mathbf{h}_{n_{1}}\left(k_{i}\right) \mathbf{h}_{n_{2}}^{H}\left(k_{j}\right)\right] \\
& =\mathbf{F}_{k_{i}} \mathbb{E}\left[\overline{\mathbf{h}}_{n_{1}} \overline{\mathbf{h}}_{n_{2}}^{H}\right] \mathbf{F}_{k_{j}}^{H} \\
& =\rho^{\left|n_{1}-n_{2}\right|} \mathbf{F}_{k_{i}}\left(\mathbf{P} \otimes \mathbf{I}_{N_{R} N_{T}}\right) \mathbf{F}_{k_{j}}^{H} . \tag{20}
\end{align*}
$$

Using the result derived in (20), the closed-form expressions of $\mathbf{R}_{h h}$ and $\mathbf{R}_{\tilde{h} h}$ can be evaluated as below. The auto-correlation matrix $\mathbf{R}_{h h}$ can be derived as

$$
\begin{equation*}
\mathbf{R}_{h h}=\mathbf{J}_{\rho} \otimes\left(\mathbf{F} \tilde{\mathbf{P}} \mathbf{F}^{H}\right) \tag{21}
\end{equation*}
$$

where we have $\tilde{\mathbf{P}}=\left(\mathbf{P} \otimes \mathbf{I}_{N_{R} N_{T}}\right)$. The matrices \mathbf{J}_{ρ} and \mathbf{F} are defined as

$$
\mathbf{J}_{\rho}=\left[\begin{array}{cccc}
1 & \rho & \ldots & \rho^{R-1} \tag{22}\\
\rho & 1 & \ldots & \rho^{R-2} \\
\vdots & \vdots & & \vdots \\
\rho^{R-1} & \rho^{R-2} & \ldots & 1
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{c}
\mathbf{F}_{k_{1}} \\
\mathbf{F}_{k_{2}} \\
\vdots \\
\mathbf{F}_{k_{N_{P}}}
\end{array}\right]
$$

Similarly, the cross-correlation matrix $\mathbf{R}_{\tilde{h} h}$ can be written as

$$
\begin{equation*}
\mathbf{R}_{\tilde{h} h}=\mathbf{J}_{\rho} \otimes\left(\overline{\mathbf{F}} \tilde{\mathbf{P}} \mathbf{F}^{H}\right) \tag{23}
\end{equation*}
$$

where the matrix $\overline{\mathbf{F}}$ is defined as

$$
\overline{\mathbf{F}}=\left[\begin{array}{c}
\mathbf{F}_{1} \tag{24}\\
\mathbf{F}_{2} \\
\vdots \\
\mathbf{F}_{N}
\end{array}\right]
$$

Finally, the 2D-MMSE estimate is obtained as

$$
\begin{align*}
\hat{\tilde{\mathbf{h}}} & =\mathbf{R}_{\tilde{h} h} \boldsymbol{\Phi}^{H}\left(\boldsymbol{\Phi} \mathbf{R}_{h h} \boldsymbol{\Phi}^{H}+\sigma_{w}^{2} \mathbf{I}\right)^{-1} \mathbf{y} \\
& =\left(\mathbf{J}_{\rho} \otimes\left(\overline{\mathbf{F}} \tilde{\mathbf{P}} \mathbf{F}^{H}\right)\right) \boldsymbol{\Phi}^{H}\left(\boldsymbol{\Phi}\left(\mathbf{J}_{\rho} \otimes\left(\mathbf{F} \tilde{\mathbf{P}} \mathbf{F}^{H}\right)\right) \boldsymbol{\Phi}^{H}+\sigma_{w}^{2} \mathbf{I}\right)^{-1} \mathbf{y} \tag{25}
\end{align*}
$$

REFERENCES

[1] W. G. Jeon, K. H. Paik, and Y. S. Cho, "Two-dimensional MMSE channel estimation for OFDM systems with transmitter diversity," in IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No. 01CH37211), vol. 3. IEEE, 2001, pp. 1682-1685.

