Department of Materials Science and Engineering Indian Institute of Technology Kanpur

Prerequisite:	None
Category:	Compulsory course for all M.Tech. students of MSE Department, to
	be offered in odd semester

Course Contents:

Basic crystallography and crystal structures (8 Lectures hours) Lecture		
Periodic patterns, Lattices, Motif, Unit cells, Crystal structure, Primitive and Non-	1	
primitive cells		
Symmetry elements and point group notations	1	
Crystal systems and Bravais lattices	1	
Crystallographic directions and planes, Miller indices and Weiss zone law	1	
Streographic projections	1	
Bonding in materials and atomic packing in metals, co-ordination number concepts		
Covalent bonding, glasses and polymers	2	
Crystal defects and their significance (12 Lectures hours) Lecture	e Hours	
Point defects and their role in materials Processing, performance and failure	1	
Ionically bonded structures: Pauling's rules and some examples	$\frac{2}{2}$	
Point defects: thermodynamics, schottkey and Frenkel defect, Kroger-Vink notation,		
defect interactions		
Dislocations, burgers vector, types of dislocations	1	
Dislocation movement, slip systems, energetics of dislocations and their interactions		
Planar defects: stacking faults, grain boundaries (low angle and high angle), anti-phase		
domain boundaries, Twinning		
Surface defects with relevance to thin films	1	
Non-equilibrium structures such as metallic glasses	1	
Diffraction and Imaging(14 Lectures hours)Lecture	Hours	
Phenomena of diffraction	1	
Radiation-matter Interactions and response signals	1	
X-ray diffraction: powder diffraction, phase identification, Scherrer formula, strain and grain size determination	2	
Fundamentals of Imaging: magnification, resolution, depth of field and depth of focus, aberration and astigmatism		
Optical microscopy, stereology basics and quantitative analysis		
Fundamentals of SEM: imaging modes, image contrast, illustrative applications		
Imaging with TEM: Contrast mechanisms, BF, DF, Weak beam DF images		
TEM application in crystal defect analysis		

Electron diffraction in TEM and applications			1
STM, AFM and nanoindentation			
Spectroscopic Techniques	(4 Lectures hours)	Lectur	re Hours
Fundamental basis of Spectroscopic analysis		1	
EDS and WDS, EPMA applications			1
X ray Photon Spectroscopy and Auger electron spectroscopy			1
SIMS and EELS			1
Thermal Analysis Techniques	(2 Lectures hours)	Lectur	e Hours
DSC/DTA/TGA/Dilatometry			2
TOTAL LECTURE HOURS			40

References:

- 1. Crystals and Crystal structures, R.J.D. Tilley, John Wiley and Sons, 2006
- 2. Materials Science and Engineering W.D. Callister, Jr.Wiley India(P) Ltd., 2007
- 3. Materials Science and Engineering, G.S. Upadhyaya and Anish Upadhyaya, Viva books, 2010
- 4. Fundamentals of Materials Science-the microstructure-property relationship using metals as model systems, E.J. Mittemeijer, Springer, 2010
- 5. Microstructural Characterization of Materials D. Brandon and W.D. Kaplan, John Wiley and Sons, 2008
- 6. Science of Microscopy, P.W. Hawkes and J.C.H. Spence, Springer, 2007
- 7. Scanning Electron Microscopy & X-Ray Microanalysis, J.Goldstein et.al, Springer, 2003
- 8. Transmission Electron Microscopy B.D.Williams & C.B.Carter, Springer, 2009
- 9. Surface Analysis methods in materials science, Editors: D.J.O'Connor, B.A. Sextton, R.St. C. Smart, Springer, 2003.
- 10. Materials Characterisation Techniques, S. Zhang, Lin Li and Ashok Kumar, CRC Press, 2009