	Indian Institute of Technology Kanpur Department of Mathematics and Statistics WRITTEN TEST FOR PH.D. ADMISSIONS IN MATHEMATICS															
Maximum Marks : 120		Date : December 11, 2017					Time : 90 Minutes									
Name of the Candidate																
Roll Number				Category (Tick One)			GEN OBC		BC	SC/ST/PwD						

INSTRUCTIONS

- (1) There are three sections; the first section has true/false questions, the second section is fill in the blanks and the third section has multiple choice questions.
 - In the first section, every correct answer will be awarded 3 marks and a wrong answer will be awarded NEGATIVE 3 (-3) marks.
 - In the second section, every correct answer will be awarded 3 marks and a wrong answer will be awarded 0 marks.
 - The third section has one or two correct answers. In this section
 - each question has four choices.
 - if a wrong answer is selected in a question then that entire question will be awarded 0 marks.
 - the candidate gets full credit of 3 marks, only if he/she selects all the correct answers and no wrong answers; 1 mark will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.

(2) These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

(3) Please enter your answers on this page in the space given below.

True/Fal	se Questions	Fill In The Blanks Questions						
Question Number	Correct Option	Q. No.	Answer	Q. No.	Answer			
1		1		6				
2		2		7				
3		3		8				
4		4		9				
5		5		10				

Mu	ltiple Ch	oice Qu	estions

Q. No.	Correct Option(s)								
1		6		11		16		21	
2		7		12		17		22	
3		8		13		18		23	
4		9		14		19		24	
5		10		15		20		25	

Notations

- I. We denote by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} , the set of natural numbers, integers, rational numbers, real numbers and complex numbers, respectively.
- II. We denote by S^n , the *n*-sphere, that is, $S^n = \{x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i^2 = 1\}.$
- III. We denote by S_n the permutation group on n symbols.
- IV. The differential operator ∇^2 is given by

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

True/False

- (1) If $f : \mathbb{R} \to \mathbb{R}$ is continuous with $\lim_{|x|\to\infty} |f(x)| = 0$, then f is uniformly continuous on \mathbb{R} .
- (2) There is no continuous bijective map from the sphere S^2 to the circle S^1 .
- (3) The iterative method $x_{m+1} = g(x_m), m \ge 0$, with $g(x) = (x-2)^2 6$ for the solution of $x^2 - x - 2 = 0$ converges quadratically in a neighborhood of the root x = 2.
- (4) Let $(x_e, y_e, z_e)^T$ be the solution of the linear system

$$3x + y - 3z = 1$$
$$x + y - 2z = 2$$
$$3x + 2y - z = -3$$

If $(x_n, y_n, z_n)^T$ denotes the *n*-th Gauss-Seidel iteration and $\boldsymbol{e}_n = (x_n, y_n, z_n)^T - (x_e, y_e, z_e)^T$, $n = (x_n, y_n, z_n)^T$ $0, 1, 2, \ldots$, denotes the error vector, then, $\|\boldsymbol{e}_n\|_2 \to 0$ as $n \to \infty$ for any non-zero vector \boldsymbol{e}_0 , where $\|\boldsymbol{r}\|_2 = \left(\sum_{i=1}^3 r_i^2\right)^{1/2}$ for any $\boldsymbol{r} \in \mathbb{R}^3$.

(5) Let $\Omega = \{(x,y) \in \mathbb{R}^2 \mid x^2 + (y-1/2)^2 < 1\}$ with its boundary $\partial \Omega$ and let u(x,y) be the solution of the following boundary value problem

$$\nabla^2 u(x,y) = 0, \quad (x,y) \in \Omega,$$
$$u(x,y) = x^2 + y^2, \quad (x,y) \in \partial\Omega.$$

Then, $\inf \{u(x, y) : (x, y) \in \Omega \cup \partial \Omega\} = 1/2.$

Fill in the blanks

(1) The value of the contour integral oriented counterclockwise,

ı

$$\oint_{|z|=1} \frac{e^z}{z^{10}} dz$$

is _____.

- (2) Number of subgroups of S_3 is _____.
- (3) A 2×2 real matrix A has an eigenvalue 2 and its determinant is 6. Then the sum of entries of the principal diagonal of A is _____.

[30 marks]

[15 marks]

- (4) Let $A = \{x \in S_6 \mid x \text{ is a product of two disjoint 3-cycles}\}$. The number of elements in A is
- (5) Let G denote the group $\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$ under multiplication modulo 36. Then the order of 5 in G is ______.
- (6) Number of 5-Sylow subgroups of the symmetric group S_5 is ______.
- (7) If y = y(x) is the solution of the initial value problem

$$xy' = y + y^2, \quad y(-2) = -2,$$

then y(-3) =_____.

- (8) If $y = y_p(x)$ is a particular solution of $y'' y' = x^2$, then $y_p(x) =$ ______.
- (9) The curve y = y(x) satisfies y'' = y' 1 and touches the x-axis at the origin. Then y(x) =______.

(10) Let u(x,t) be the solution of the initial value problem

 $u_t = 2u_{xx}, \qquad 0 < x < 1; \ t > 0,$ $u(x,0) = 1 - x^2, \quad 0 \le x \le 1,$ $u(0,t) = 1 - 4t, u(1,t) = -4t, \quad t > 0.$

If P and Q respectively denote the maximum and minimum values of u(x, t) in the closed rectangle $R = \{0 \le x \le 1, 0 \le t \le 2\}$, then P - Q =______.

Questions with one or two correct choices

(1) Let \mathcal{P}_n denote the set of all polynomials of degree at most n. The quadrature rule

$$Q(f) = \frac{1}{18} \left(5f\left(\frac{1-\sqrt{3/5}}{2}\right) + 8f\left(\frac{1}{2}\right) + 5f\left(\frac{1+\sqrt{3/5}}{2}\right) \right)$$

for approximation of $I(f) = \int_0^1 f(x) dx$ is exact for all f in

a.
$$\mathcal{P}_4$$
 b. \mathcal{P}_5 c. \mathcal{P}_6 d. \mathcal{P}_7

(2) Consider the initial value problem

$$y'' + y = x |\sin(1/x)|, \qquad x \in (-1, 1),$$

with y(0) = y'(0) = 1. Which of the following is true

- a. It has infinitely many solutions.
- **b.** It has a unique solution.
- c. It has exactly two solutions.
- **d.** It has no solution.
- (3) Let $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ be a unit disk in \mathbb{R}^2 and $\partial \Omega$ be the boundary of Ω . Let u(x, y) be the solution of the Dirichlet problem

$$\nabla^2 u = 0 \quad \text{for } (x, y) \in \Omega$$
$$u(x, y) = 1 + 2x^2 \quad \text{for } (x, y) \in \partial\Omega.$$

Then u(3/4, 1/4) is equal to

[75 marks]

- 4
- (4) Let G be a group and H be a normal subgroup of G such that H is generated by an element aof order 6. Let $b \in G$. Then bab^{-1} is
 - **b.** a or a^3 **a.** a or a^2 c. a or a^4 **d.** a or a^5
- (5) Let G be a group. Then which of the following statement(s) is/are true?
 - **a.** If G/Z(G) is cyclic then G need not be abelian, where Z(G) is the centre of G.
 - **b.** If G has at least two elements then there always exists a nontrivial homomorphism from \mathbb{Z} to G.
 - **c.** If $|G| = p^3$ for some prime p, then G is necessarily abelian.
 - **d.** If G is nonabelian, it may not have a nontrivial automorphism.
- (6) Which of the following statement(s) is/are true ?
 - **a.** \mathbb{R} and \mathbb{C} are isomorphic as additive groups.
 - **b.** \mathbb{R} and \mathbb{C} are isomorphic as rings.
 - **c.** \mathbb{R} and \mathbb{C} are isomorphic as fields.
 - **d.** \mathbb{R} and \mathbb{C} are isomorphic as vector spaces over \mathbb{Q} .
- (7) Let R denote the ring $\{0, 1, 2, \dots, 20\}$ under addition and multiplication modulo 21. Then the number of invertible elements in R is
 - **b.** 4 **d.** 12 **a.** 1 **c.** 8
- (8) Let R and S be two commutative rings with unity and $f: R \to S$ be a ring homomorphism. Then which of the following statement(s) is/are true ?
 - **a.** Image of an ideal of *R* is always an ideal in *S*.
 - **b.** Image of an ideal of R is an ideal of S if f is injective.
 - c. Image of an ideal of R is an ideal of S if f is surjective.
 - **d.** Image of an ideal of *R* is an ideal of *S* if *S* is a field.
- (9) Which of the following statement(s) is/are true ?
 - **a.** For every $n \in \mathbb{N}$ there exists a commutative ring with unity whose characteristic is n.
 - **b.** There exists a integral domain with unity whose characteristic is 57.

 - **c.** For every postive integers m and n, the characteristic of the ring $\frac{\mathbb{Z}}{m\mathbb{Z}} \times \frac{\mathbb{Z}}{n\mathbb{Z}}$ is mn. **d.** For a prime number p, a commutative ring with unity of characteristic p contains a subring isomorphic to $\frac{\mathbb{Z}}{n\mathbb{Z}}$.
- (10) Let A and P be 3×3 real matrices such that P is invertible and $P^{-1}AP$ is diagonal. Then the INCORRECT statement(s) is/are :
 - **a.** all eigenvalues of A must be real.
 - **b.** all eigenvalues of A must be distinct.
 - **c.** A has three linearly independent eigenvectors.
 - **d.** the subspace spanned by eigenvectors of A is \mathbb{R}^3 .
- (11) Let A be a 2×2 matrix of rank 1. Then A is
 - a. diagonalizable and non-singular.
 - **b.** diagonalizable and nilpotent.
 - **c.** neither diagonalizable nor nilpotent.
 - d. either diagonalizable or nilpotent.

- (12) The characteristic polynomial of a matrix A is $x^2 x 1$. Then
 - **a.** A^{-1} does not exist.
 - **b.** A^{-1} exists but cannot be determined from the data.
 - **c.** $A^{-1} = A + I$.
 - **d.** $A^{-1} = A I$.
- (13) Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \sin(x^2)$. Which of the following statement(s) is/are true?
 - **a.** f is uniformly continuous on \mathbb{R} .
 - **b.** f is NOT uniformly continuous on \mathbb{R} .
 - **c.** f is uniformly continuous on (0, 1).
 - **d.** f is NOT uniformly continuous on (0, 1).
- (14) Consider the sequence $(a_n)_{n=1}^{\infty}$ defined by

$$a_n = \begin{cases} \frac{1}{n}, & \text{if } n = 2^k, k = 0, 1, 2, \dots \\ 0, & \text{otherwise.} \end{cases}$$

Then

- **a.** $\sum_{n=1}^{\infty} a_n < \infty \text{ but } \lim_{n \to \infty} (na_n) \text{ does not exist.}$ **b.** $\sum_{n=1}^{\infty} a_n \text{ is divergent but } \lim_{n \to \infty} (na_n) = 0.$ **c.** $\sum_{n=1}^{\infty} a_n < \infty \text{ and } (na_n)_{n=1}^{\infty} \text{ has a subsequence with limit 1.}$ **d.** $\sum_{n=1}^{\infty} a_n < \infty \text{ and } \lim_{n \to \infty} (na_n) = 0.$
- (15) Consider (\mathbb{R}^2, d) with the usual Euclidean metric d. Let $X = \{(x, \frac{1}{x}) \in \mathbb{R}^2 \mid x > 0\} \cup \{(0, y) \in \mathbb{R}^2 \mid y \ge 0\} \cup \{(x, 0) \in \mathbb{R}^2 \mid x \ge 0\}$. Then
 - **a.** X is open but not closed.
 - **b.** X is neither open nor closed.
 - **c.** X is closed but not open.
 - **d.** X is open and closed.
- (16) Let $f, g: [0,1] \to \mathbb{R}$ be functions defined as

$$f(t) = \begin{cases} \frac{\sin t}{t}, & t \neq 0\\ 0, & t = 0, \end{cases} \qquad g(t) = \begin{cases} \frac{\sin t}{t^2}, & t \neq 0\\ 0, & t = 0. \end{cases}$$

Then

- **a.** both f and g are Riemann integrable on [0, 1].
- **b.** f is Riemann integrable but g is not Riemann integrable on [0, 1].
- **c.** g is Riemann integrable on [0, 1] but f is not Riemann integrable on [0, 1].
- **d.** both f and g are NOT Riemann integrable on [0, 1].

(17) Let p(z) be a non-zero polynomial in complex variable z. Let

$$f(z) = p(z)e^{\frac{1}{z}}$$
 for $z \in \mathbb{C} \setminus \{0\}$.

Then

a. f has a removable singularity at z = 0.

- **b.** f has a pole at z = 0 with residue equal to 0.
- **c.** f has an essential singularity at z = 0.
- **d.** f has a pole at z = 0 with residue equal to 1.
- (18) For $z \in \mathbb{C}$, $\lim_{|z| \to \infty} |e^z|$
 - **a.** does not exist in \mathbb{R} .
 - **b.** is equal to 1.
 - **c.** is equal to 0.
 - **d.** is ∞ .
- (19) If $a = \lim_{n \to \infty} (1 + \frac{1}{n^2})^n$ and $b = \lim_{n \to \infty} (1 + \frac{1}{n})^{n^2}$, then

a.
$$a = 1, b = \infty$$
. **b.** $a = 0, b = 1$. **c.** $a = \infty, b = 1$. **d.** $a = 1, b = 0$

(20) Let

$$\ell^{2} = \{x = (x_{n}) : x_{n} \in \mathbb{R}, \sum_{n=1}^{\infty} |x_{n}|^{2} < \infty\} \text{ with } ||x||_{2} := \left(\sum_{n=1}^{\infty} |x_{n}|^{2}\right)^{\frac{1}{2}}.$$

If $A = \{x = (x_n) \in \ell^2 : x_n = 0 \text{ for all but finitely many n's}\}$, then

- **a.** A is open but not closed.
- **b.** A is both open and closed.
- **c.** A is closed but not open.
- **d.** A is neither open nor closed.
- (21) $(C[0,1],||.||_{\infty})$ denotes the set of all real-valued continuous functions on [0,1] with $||f||_{\infty} :=$ $\sup\{|f(t)|, t \in [0, 1]\}$. For each $x \in [0, 1]$, define

$$Tf(x) = \int_0^x f(t)dt.$$

Then

- **a.** T is injective but not surjective.
- **b.** T is surjective but not injective.
- c. T is bijective.
- **d.** T is neither injective nor surjective.
- (22) Let $f: (S, d_S) \to (T, d_T)$ be a bijective continuous function of metric spaces, and $f^{-1}: (T, d_T) \to$ (S, d_S) be the inverse function. Which of the following statement(s) is/are true?
 - **a.** f^{-1} is always a continuous function.
 - **b.** f^{-1} is continuous if (S, d_S) is compact. **c.** f^{-1} is continuous if (T, d_T) is compact.

 - **d.** f^{-1} is continuous if (S, d_S) is connected.

6

(23) Consider $\ell^2 = \{x = (x_n) : x_n \in \mathbb{R}, \sum_{n=1}^{\infty} |x_n|^2 < \infty\}$. Let $T, S : \ell^2 \to \ell^2$ be defined as

$$T(x_1, x_2, x_3, \dots) = (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots)$$
 and $S(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots)$

for all $x = (x_n) \in \ell^2$. Which of the following statement(s) is/are true?

- **a.** S and T have eigenvalues.
- **b.** T does not have any eigenvalues but S has eigenvalues.
- c. T has eigenvalues but S does not have any eigenvalues.
- **d.** Neither T nor S have eigenvalues.
- (24) C[0,1] denotes the set of all real-valued continuous functions on [0,1]. Let $\{f_n\}$ be a sequence of functions in C[0,1] such that $\lim_{n\to\infty} f_n(x) = f(x)$ for each $x \in [0,1]$. Then
 - **a.** f is continuous and $\int_0^{1-\frac{1}{n}} f_n \to \int_0^1 f$ as $n \to \infty$. **b.** f is continuous but $\int_0^{1-\frac{1}{n}} f_n \not\to \int_0^1 f$ as $n \to \infty$. **c.** If $f_n \to f$ uniformly, then f is continuous and $\int_0^{1-\frac{1}{n}} f_n \to \int_0^1 f$ as $n \to \infty$. **d.** If $f_n \to f$ uniformly, then f is continuous but $\int_0^{1-\frac{1}{n}} f_n \not\to \int_0^1 f$ as $n \to \infty$.
- (25) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Let A be a bounded set in \mathbb{R} and B be a closed and bounded set in \mathbb{R} . Then
 - a. f(A) is bounded and f(B) is closed and bounded.
 b. If x_n → x in A, then f(x_n) → f(x) in f(A).
 c. f(A) is not bounded and f(B) is closed.
 d. f(A) is not bounded and f(B) is bounded.