

INSTRUCTIONS

(1) There are three sections; the first section has true/false questions, the second section is fill in the blanks and the third section has multiple choice questions.

- In the first section, every correct answer will be awarded 3 marks and a wrong answer will be awarded NEGATIVE $3(-3)$ marks.
- In the second section, every correct answer will be awarded 3 marks and a wrong answer will be awarded 0 marks.
- The third section has one or two correct answers. In this section
- each question has four choices.
- if a wrong answer is selected in a question then that entire question will be awarded 0 marks.
- the candidate gets full credit of 3 marks, only if he/she selects all the correct answers and no wrong answers; 1 mark will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.
(2) These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.
(3) Please enter your answers on this page in the space given below.

True/False Questions
 Fill In The Blanks Questions

Question Number	Correct Option
1	
2	
3	
4	
5	

Q. No.	Answer	Q. No.	Answer
1		6	
2		7	
3		8	
4		9	
5		10	

Multiple Choice Questions

Q. No.	Correct Option(s)								
1		6		11		16		21	
2		7		12		17		22	
3		8		13		18		23	
4		9		14		19		24	
5		10		15		20		25	

Notations

I. We denote by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C}, the set of natural numbers, integers, rational numbers, real numbers and complex numbers, respectively.
II. We denote by S^{n}, the n-sphere, that is, $S^{n}=\left\{x \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x_{i}^{2}=1\right\}$.
III. We denote by S_{n} the permutation group on n symbols.
IV. The differential operator ∇^{2} is given by

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

True/False
(1) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with $\lim _{|x| \rightarrow \infty}|f(x)|=0$, then f is uniformly continuous on \mathbb{R}.
(2) There is no continuous bijective map from the sphere S^{2} to the circle S^{1}.
(3) The iterative method $x_{m+1}=g\left(x_{m}\right), m \geq 0$, with $g(x)=(x-2)^{2}-6$ for the solution of $x^{2}-x-2=0$ converges quadratically in a neighborhood of the root $x=2$.
(4) Let $\left(x_{e}, y_{e}, z_{e}\right)^{T}$ be the solution of the linear system

$$
\begin{aligned}
3 x+y-3 z & =1 \\
x+y-2 z & =2 \\
3 x+2 y-z & =-3 .
\end{aligned}
$$

If $\left(x_{n}, y_{n}, z_{n}\right)^{T}$ denotes the n-th Gauss-Seidel iteration and $\boldsymbol{e}_{n}=\left(x_{n}, y_{n}, z_{n}\right)^{T}-\left(x_{e}, y_{e}, z_{e}\right)^{T}$, $n=$ $0,1,2, \ldots$, denotes the error vector, then, $\left\|\boldsymbol{e}_{n}\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$ for any non-zero vector \boldsymbol{e}_{0}, where $\|\boldsymbol{r}\|_{2}=\left(\sum_{i=1}^{3} r_{i}^{2}\right)^{1 / 2}$ for any $\boldsymbol{r} \in \mathbb{R}^{3}$.
(5) Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+(y-1 / 2)^{2}<1\right\}$ with its boundary $\partial \Omega$ and let $u(x, y)$ be the solution of the following boundary value problem

$$
\begin{array}{cc}
\nabla^{2} u(x, y)=0, & (x, y) \in \Omega \\
u(x, y)=x^{2}+y^{2}, & (x, y) \in \partial \Omega
\end{array}
$$

Then, $\inf \{u(x, y):(x, y) \in \Omega \cup \partial \Omega\}=1 / 2$.

Fill in the blanks

(1) The value of the contour integral oriented counterclockwise,

$$
\oint_{|z|=1} \frac{e^{z}}{z^{10}} d z
$$

is \qquad -.
(2) Number of subgroups of S_{3} is \qquad $-$
(3) A 2×2 real matrix A has an eigenvalue 2 and its determinant is 6 . Then the sum of entries of the principal diagonal of A is \qquad .
(4) Let $A=\left\{x \in S_{6} \mid x\right.$ is a product of two disjoint 3 -cycles $\}$. The number of elements in A is
\qquad .
(5) Let G denote the group $\{1,5,7,11,13,17,19,23,25,29,31,35\}$ under multiplication modulo 36 . Then the order of 5 in G is \qquad .
(6) Number of 5 -Sylow subgroups of the symmetric group S_{5} is \qquad .
(7) If $y=y(x)$ is the solution of the initial value problem

$$
x y^{\prime}=y+y^{2}, \quad y(-2)=-2,
$$

then $y(-3)=$ \qquad
(8) If $y=y_{p}(x)$ is a particular solution of $y^{\prime \prime}-y^{\prime}=x^{2}$, then $y_{p}(x)=$ \qquad .
(9) The curve $y=y(x)$ satisfies $y^{\prime \prime}=y^{\prime}-1$ and touches the x-axis at the origin. Then $y(x)=$
\qquad .
(10) Let $u(x, t)$ be the solution of the initial value problem

$$
\begin{gathered}
u_{t}=2 u_{x x}, \quad 0<x<1 ; t>0 \\
u(x, 0)=1-x^{2}, \quad 0 \leq x \leq 1, \\
u(0, t)=1-4 t, u(1, t)=-4 t, \quad t>0 .
\end{gathered}
$$

If P and Q respectively denote the maximum and minimum values of $u(x, t)$ in the closed rectangle $R=\{0 \leq x \leq 1,0 \leq t \leq 2\}$, then $P-Q=$ \qquad .

Questions with one or two correct choices

(1) Let \mathcal{P}_{n} denote the set of all polynomials of degree at most n. The quadrature rule

$$
Q(f)=\frac{1}{18}\left(5 f\left(\frac{1-\sqrt{3 / 5}}{2}\right)+8 f\left(\frac{1}{2}\right)+5 f\left(\frac{1+\sqrt{3 / 5}}{2}\right)\right)
$$

for approximation of $I(f)=\int_{0}^{1} f(x) d x$ is exact for all f in
a. \mathcal{P}_{4}
b. \mathcal{P}_{5}
c. \mathcal{P}_{6}
d. \mathcal{P}_{7}
(2) Consider the initial value problem

$$
y^{\prime \prime}+y=x|\sin (1 / x)|, \quad x \in(-1,1)
$$

with $y(0)=y^{\prime}(0)=1$. Which of the following is true
a. It has infinitely many solutions.
b. It has a unique solution.
c. It has exactly two solutions.
d. It has no solution.
(3) Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ be a unit disk in \mathbb{R}^{2} and $\partial \Omega$ be the boundary of Ω. Let $u(x, y)$ be the solution of the Dirichlet problem

$$
\begin{aligned}
\nabla^{2} u & =0 \quad \text { for } \quad(x, y) \in \Omega \\
u(x, y) & =1+2 x^{2} \quad \text { for }(x, y) \in \partial \Omega .
\end{aligned}
$$

Then $u(3 / 4,1 / 4)$ is equal to
a. $17 / 8$
b. $1 / 2$
c. $5 / 2$
d. $3 / 2$
(4) Let G be a group and H be a normal subgroup of G such that H is generated by an element a of order 6 . Let $b \in G$. Then $b a b^{-1}$ is
a. a or a^{2}
b. a or a^{3}
c. a or a^{4}
d. a or a^{5}
(5) Let G be a group. Then which of the following statement(s) is/are true ?
a. If $G / Z(G)$ is cyclic then G need not be abelian, where $Z(G)$ is the centre of G.
b. If G has at least two elements then there always exists a nontrivial homomorphism from \mathbb{Z} to G.
c. If $|G|=p^{3}$ for some prime p, then G is necessarily abelian.
d. If G is nonabelian, it may not have a nontrivial automorphism.
(6) Which of the following statement(s) is/are true ?
a. \mathbb{R} and \mathbb{C} are isomorphic as additive groups.
b. \mathbb{R} and \mathbb{C} are isomorphic as rings.
c. \mathbb{R} and \mathbb{C} are isomorphic as fields.
d. \mathbb{R} and \mathbb{C} are isomorphic as vector spaces over \mathbb{Q}.
(7) Let R denote the ring $\{0,1,2, \ldots, 20\}$ under addition and multiplication modulo 21 . Then the number of invertible elements in R is
a. 1
b. 4
c. 8
d. 12
(8) Let R and S be two commutative rings with unity and $f: R \rightarrow S$ be a ring homomorphism. Then which of the following statement(s) is/are true?
a. Image of an ideal of R is always an ideal in S.
b. Image of an ideal of R is an ideal of S if f is injective.
c. Image of an ideal of R is an ideal of S if f is surjective.
d. Image of an ideal of R is an ideal of S if S is a field.
(9) Which of the following statement(s) is/are true ?
a. For every $n \in \mathbb{N}$ there exists a commutative ring with unity whose characteristic is n.
b. There exists a integral domain with unity whose characteristic is 57 .
c. For every postive integers m and n, the characteristic of the ring $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$ is $m n$.
d. For a prime number p, a commutative ring with unity of characteristic p contains a subring isomorphic to $\frac{\mathbb{Z}}{p \mathbb{Z}}$.
(10) Let A and P be 3×3 real matrices such that P is invertible and $P^{-1} A P$ is diagonal. Then the INCORRECT statement(s) is/are :
a. all eigenvalues of A must be real.
b. all eigenvalues of A must be distinct.
c. A has three linearly independent eigenvectors.
d. the subspace spanned by eigenvectors of A is \mathbb{R}^{3}.
(11) Let A be a 2×2 matrix of rank 1 . Then A is
a. diagonalizable and non-singular.
b. diagonalizable and nilpotent.
c. neither diagonalizable nor nilpotent.
d. either diagonalizable or nilpotent.
(12) The characteristic polynomial of a matrix A is $x^{2}-x-1$. Then
a. A^{-1} does not exist.
b. A^{-1} exists but cannot be determined from the data.
c. $A^{-1}=A+I$.
d. $A^{-1}=A-I$.
(13) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=\sin \left(x^{2}\right)$. Which of the following statement(s) is/are true?
a. f is uniformly continuous on \mathbb{R}.
b. f is NOT uniformly continuous on \mathbb{R}.
c. f is uniformly continuous on $(0,1)$.
d. f is NOT uniformly continuous on $(0,1)$.
(14) Consider the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ defined by

$$
a_{n}= \begin{cases}\frac{1}{n}, & \text { if } n=2^{k}, k=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

Then
a. $\sum_{n=1}^{\infty} a_{n}<\infty$ but $\lim _{n \rightarrow \infty}\left(n a_{n}\right)$ does not exist.
b. $\sum_{n=1}^{\infty} a_{n}$ is divergent but $\lim _{n \rightarrow \infty}\left(n a_{n}\right)=0$.
c. $\sum_{n=1}^{\infty} a_{n}<\infty$ and $\left(n a_{n}\right)_{n=1}^{\infty}$ has a subsequence with limit 1 .
d. $\sum_{n=1}^{\infty} a_{n}<\infty$ and $\lim _{n \rightarrow \infty}\left(n a_{n}\right)=0$.
(15) Consider $\left(\mathbb{R}^{2}, d\right)$ with the usual Euclidean metric d. Let $X=\left\{\left.\left(x, \frac{1}{x}\right) \in \mathbb{R}^{2} \right\rvert\, x>0\right\} \cup\{(0, y) \in$ $\left.\mathbb{R}^{2} \mid y \geq 0\right\} \cup\left\{(x, 0) \in \mathbb{R}^{2} \mid x \geq 0\right\}$. Then
a. X is open but not closed.
b. X is neither open nor closed.
c. X is closed but not open.
d. X is open and closed.
(16) Let $f, g:[0,1] \rightarrow \mathbb{R}$ be functions defined as

$$
f(t)=\left\{\begin{array}{l}
\frac{\sin t}{t}, \quad t \neq 0 \\
0, \quad t=0,
\end{array} \quad g(t)=\left\{\begin{array}{l}
\frac{\sin t}{t^{2}}, \quad t \neq 0 \\
0, \quad t=0
\end{array}\right.\right.
$$

Then
a. both f and g are Riemann integrable on $[0,1]$.
b. f is Riemann integrable but g is not Riemann integrable on $[0,1]$.
c. g is Riemann integrable on $[0,1]$ but f is not Riemann integrable on $[0,1]$.
d. both f and g are NOT Riemann integrable on $[0,1]$.
(17) Let $p(z)$ be a non-zero polynomial in complex variable z. Let

$$
f(z)=p(z) e^{\frac{1}{z}} \quad \text { for } \quad z \in \mathbb{C} \backslash\{0\}
$$

Then
a. f has a removable singularity at $z=0$.
b. f has a pole at $z=0$ with residue equal to 0 .
c. f has an essential singularity at $z=0$.
d. f has a pole at $z=0$ with residue equal to 1 .
(18) For $z \in \mathbb{C}, \lim _{|z| \rightarrow \infty}\left|e^{z}\right|$
a. does not exist in \mathbb{R}.
b. is equal to 1 .
c. is equal to 0 .
d. is ∞.
(19) If $a=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n^{2}}\right)^{n}$ and $b=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n^{2}}$, then
a. $a=1, b=\infty$.
b. $a=0, b=1$.
c. $a=\infty, b=1$.
d. $a=1, b=0$.
(20) Let

$$
\ell^{2}=\left\{x=\left(x_{n}\right): x_{n} \in \mathbb{R}, \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\} \text { with }\|x\|_{2}:=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{\frac{1}{2}}
$$

If $A=\left\{x=\left(x_{n}\right) \in \ell^{2}: x_{n}=0\right.$ for all but finitely many n's $\}$, then
a. A is open but not closed.
b. A is both open and closed.
c. A is closed but not open.
d. A is neither open nor closed.
(21) $\left(C[0,1],\|\cdot\|_{\infty}\right)$ denotes the set of all real-valued continuous functions on $[0,1]$ with $\|f\|_{\infty}:=$ $\sup \{|f(t)|, t \in[0,1]\}$. For each $x \in[0,1]$, define

$$
T f(x)=\int_{0}^{x} f(t) d t .
$$

Then
a. T is injective but not surjective.
b. T is surjective but not injective.
c. T is bijective.
d. T is neither injective nor surjective.
(22) Let $f:\left(S, d_{S}\right) \rightarrow\left(T, d_{T}\right)$ be a bijective continuous function of metric spaces, and $f^{-1}:\left(T, d_{T}\right) \rightarrow$ (S, d_{S}) be the inverse function. Which of the following statement(s) is/are true?
a. f^{-1} is always a continuous function.
b. f^{-1} is continuous if $\left(S, d_{S}\right)$ is compact.
c. f^{-1} is continuous if $\left(T, d_{T}\right)$ is compact.
d. f^{-1} is continuous if $\left(S, d_{S}\right)$ is connected.
(23) Consider $\ell^{2}=\left\{x=\left(x_{n}\right): x_{n} \in \mathbb{R}, \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\}$. Let $T, S: \ell^{2} \rightarrow \ell^{2}$ be defined as

$$
T\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \cdots\right) \text { and } \quad S\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0, x_{1}, x_{2}, x_{3}, \cdots\right)
$$

for all $x=\left(x_{n}\right) \in \ell^{2}$. Which of the following statement(s) is/are true?
a. S and T have eigenvalues.
b. T does not have any eigenvalues but S has eigenvalues.
c. T has eigenvalues but S does not have any eigenvalues.
d. Neither T nor S have eigenvalues.
(24) $C[0,1]$ denotes the set of all real-valued continuous functions on $[0,1]$. Let $\left\{f_{n}\right\}$ be a sequence of functions in $C[0,1]$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for each $x \in[0,1]$. Then
a. f is continuous and $\int_{0}^{1-\frac{1}{n}} f_{n} \rightarrow \int_{0}^{1} f$ as $n \rightarrow \infty$.
b. f is continuous but $\int_{0}^{1-\frac{1}{n}} f_{n} \nrightarrow \int_{0}^{1} f$ as $n \rightarrow \infty$.
c. If $f_{n} \rightarrow f$ uniformly, then f is continuous and $\int_{0}^{1-\frac{1}{n}} f_{n} \rightarrow \int_{0}^{1} f$ as $n \rightarrow \infty$.
d. If $f_{n} \rightarrow f$ uniformly, then f is continuous but $\int_{0}^{1-\frac{1}{n}} f_{n} \nrightarrow \int_{0}^{1} f$ as $n \rightarrow \infty$.
(25) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Let A be a bounded set in \mathbb{R} and B be a closed and bounded set in \mathbb{R}. Then
a. $f(A)$ is bounded and $f(B)$ is closed and bounded.
b. If $x_{n} \rightarrow x$ in A, then $f\left(x_{n}\right) \rightarrow f(x)$ in $f(A)$.
c. $f(A)$ is not bounded and $f(B)$ is closed.
d. $f(A)$ is not bounded and $f(B)$ is bounded.

