Ph.D admission written test

Time: 90 Minutes

Total Marks: 105

July 13, 2017

NAME:

Instructions

- 1. Write your name in **CAPITAL** letters.
- 2. We denote by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} and $\mathbb{Z}[i]$ the set of natural numbers, integers, rational numbers, real numbers, complex numbers and Gaussian integers respectively.

For $n \geq 1$, the set \mathbb{Z}_n denotes the set $\mathbb{Z}/n\mathbb{Z}$ and S_n denotes the permutation group on *n*-symbols.

We denote by $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, the unit disc in \mathbb{C} .

- 3. There is a provision for partial marking for questions in section 3.
- 4. There are three sections. The first section is True or false and the second section is fill in the blanks.
 - In the first section, every correct answer will be awarded 3 marks and a wrong answer will be awarded -3 marks.
 - In the second section every correct answer carries 3 marks.
- 5. The third section has one or more correct answers. In this section
 - each question has four choices.
 - if a wrong answer is selected in a question then that entire question will carry 0 marks.
 - the candidate gets full credit of 6 marks, only if he/she selects all the correct answers and no wrong answers. 3 marks will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.
- 6. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

1

1 True/False

- 1. There is a surjective group homomorphism from S_4 to S_3 but there is no surjective group homomorphism from S_5 to S_4 .
- 2. Let $n \ge 2$ and $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation of rank 1. Then there exists a non-zero real number c such that $A^2 = cA$.
- 3. Let G be a finite group with a unique element x of order 2. Then the center Z(G) is a group of even order.
- 4. Let $p : [a, b] \to \mathbb{R}$ be a continuous function such that $p(x) \leq C$ for all $x \in [a, b]$ and λ be an eigenvalue of the Sturm-Liouville equation

$$(x^2u')' + p(x)u + \lambda u = 0$$
 in $[a, b]$
 $u(a) = u(b) = 0.$

Then $\lambda \leq -C$.

- 5. Every solution to the equation y'' + xy = 0 has infinitely many zeros in $(0, \infty)$.
- 6. There exists a linear map $T : \mathbb{R}^8 \to \mathbb{R}^4$ such that $\operatorname{Ker}(T) := \{(x_1, x_2, \dots, x_8) \in \mathbb{R}^8 : x_1 + 2x_2 + \dots + 8x_8 = 0\}$ and $\operatorname{Im}(T) := \{(y_1, y_2, y_3, y_4) \in \mathbb{R}^4 : y_1 + y_2 + y_3 + y_4 = 0\}.$
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^3(1-x^2)(1+x)$ for $x \in \mathbb{R}$ and $\operatorname{Graph}(f) := \{(x, f(x)) : x \in \mathbb{R}\} \subseteq \mathbb{R}^2$, the graph of f. Then $\operatorname{Graph}(f)$ is homeomorphic to the interval (-1, 1).
- 8. Consider the unit circle $\mathbb{S}^1 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ in Euclidean plane \mathbb{R}^2 . Let $f : \mathbb{S}^1 \to \mathbb{R}$ be a real valued continuous function. Then there exists $x \in \mathbb{S}^1$ such that f(x) = f(-x).

2 Fill in the blanks

[15 marks]

- 1. Let U and V are subspaces of \mathbb{R}^3 such that $U = \text{span} \{(1, 1, -1), (2, 3, -1), (3, 1, -5)\}$ and $V = \text{span}\{(1, 1, -3), (3, -2, -8), (2, 1, -3)\}$. Then dim $(U \cap V)$ is ______.
- 2. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that $|f(z)| \to \infty$ as $|z| \to \infty$. Then f is a
- 3. For an infinitely differentiable function $f, \alpha, \beta \in \mathbb{R}$ and h > 0, if the approximate second derivative

$$D_h f(x) = \frac{\alpha f(x) - 5f(x+h) + 4f(x+2h) + \beta f(x+3h)}{h^2}$$

$\mathbf{2}$

yields error $f''(x) - D_h f(x) = Ch^k$ with a constant C independent of h, then k is

- 4. The number of solution(s) to the equation $u_x + u_y = 1$ such that u(x, x) = x is
- 5. Let $A := \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ and } y \in \mathbb{R} \setminus \mathbb{Q}\}$. The number of connected components of $\mathbb{R}^2 \setminus A$ is ______.

3 Questions with one or more correct answers [66 marks]

- 1. The equation $4\sin^2 x + 10x^2 = \cos x$ has
 - (a) no real solution.
 - (b) exactly one real solution.
 - (c) exactly two real solution.
 - (d) more than two real solution.
- 2. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that f(0) = 0, $f(\frac{1}{2}) = 5$, and |f(z)| < 10 for |z| < 1. Then
 - (a) the set $\{z \in \mathbb{C} : |f(z)| = 5\}$ is unbounded.
 - (b) the set $\{z \in \mathbb{C} : |f'(z)| = 5\}$ is a circle of positive radius.
 - (c) f(1) = 10.
 - (d) for all points $z \in \mathbb{C}$, f''(z) = 0.
- 3. Let A be a $n \times n$ matrix with complex entries such that $A^m = I$ for some positive integer m. Then
 - (a) A is a diagonalisable matrix.
 - (b) A is a similar to a triangular matrix but not A need not be a diagonalisable matrix.
 - (c) all the eigen values of A are roots of unity.
 - (d) none of the above.
- 4. Let G be a group of order 75. Then the group G
 - (a) is cyclic.
 - (b) has an element of order 25.
 - (c) has an element of order 5.
- $\mathbf{3}$

- (d) has an element of order 15.
- 5. Let $R := C([0, 1], \mathbb{R})$ be the ring of all continuous real valued functions on [0, 1] and let $I := \{f \in R : f(1/2) = f(1/3) = 0\}$. Then
 - (a) I is not an ideal in R.
 - (b) I is an ideal of R but not a prime ideal in R.
 - (c) I is a prime ideal but not a maximal ideal in R.
 - (d) I is a maximal ideal in \mathbb{R} .
- 6. Let v be non-trivial solution to the equation $y(x) = x \int_{0}^{x} (x-t)y(t)dt$. Then
 - (a) $v(n\pi) = 0$ for all $n \in \mathbb{Z}$.
 - (b) the function v has only finitely many zeros.
 - (c) the function v is unbounded.
 - (d) there exists a function $u : \mathbb{R} \to (-\infty, 0)$ such that u(x) > v(x) for all $x \in \mathbb{R}$.
- 7. Let $(X, || ||) = (\mathbb{R}^2, || ||_{\infty})$ and $Y := \{(x, y) \in \mathbb{R}^2 : x 3y = 0\}$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the linear functional defined by f(x, y) = x + 3y. Let $f_1, f_2 : Y \to \mathbb{R}$ be the linear functionals defined by $f_1(x, y) = x$ and $f_2(x, y) = 3y$. Then the linear functional fis Hahn-Banach extension of
 - (a) f_1 but not f_2 .
 - (b) f_2 but not f_1 .
 - (c) both f_1 and f_2 .
 - (d) neither f_1 nor f_2 .
- 8. Let $D: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be a compact operator, which is diagonal with respect to the standard orthonormal basis of $\ell^2(\mathbb{N})$. Then
 - (a) 0 is necessarily an eigenvalue of D.
 - (b) 0 need not be an eigenvalue of D.
 - (c) there exists a sequence of eigenvalues of D converging to 0.
 - (d) 0 need not be a limit point of eigenvalues of D.

9. Let u be a continuously differentiable function that satisfies

$$\frac{\partial u(t,x)}{\partial t} = \frac{\partial u(t,x)}{\partial x}, \quad (t,x) \in (0,\infty) \times (0,1),$$
$$u(0,x) = \begin{cases} 0, & x \le 1/4, \\ 1 - \exp\left(\frac{4e^{-2/(4x-1)}}{4x-3}\right), & x \in (1/4,3/4), \\ 1 & x \ge 3/4, \end{cases}$$
$$u(t,0) = 0, \quad t \in (0,\infty).$$

Then the function

- (a) u is not well defined.
- (b) u is well defined and u(1/4, 1) = 0.
- (c) u is well defined and u(1/4, 1) = 1.
- (d) u is well defined and u(1,1) = 0.
- 10. Let $\Omega = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ with its boundary $\partial\Omega$ and $\mathcal{I}_n v : \partial\Omega \to \mathbb{R}$, given by

$$(\mathcal{I}_n v)(\cos \theta, \sin \theta) = \sum_{j=0}^n v(\cos(2\pi j/n), \sin(2\pi j/n)) \prod_{\substack{k=0\\k\neq j}}^n \frac{\theta - \theta_k}{\theta_j - \theta_k}, \ \theta \in [0, 2\pi],$$

where $\theta_j = 2\pi j/n, j = 0, ..., n$, is the Lagrange interpolant of a smooth function v at n + 1 equidistant interpolation points θ_j . If u_n is the solution of the following boundary value problem

$$\Delta u = 0, \quad \text{in } \Omega,$$
$$u = \mathcal{I}_n v, \quad \text{on } \partial \Omega,$$

for $v(x,y) = x^2 + y^2$ then, $||u_n - v||_{\infty,\overline{\Omega}} = \max_{(x,y)\in\overline{\Omega}} |u_n(x,y) - v(x,y)|$ satisfies

- (a) $||u_n v||_{\infty,\overline{\Omega}} = 0.$
- (b) $||u_n v||_{\infty,\overline{\Omega}} = 1.$
- (c) $\lim_{n\to\infty} \|u_n v\|_{\infty,\overline{\Omega}} = 0.$
- (d) $\lim_{n\to\infty} ||u_n v||_{\infty,\overline{\Omega}} = 1.$

11. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $f(x,y) := (x^2 + y^2)e^{-x^2 - y^2}$. Then

- (a) the point (0,0) a global minimum for the function f.
- (b) the function f does not have a maximum.
- (c) the function f attains its maximum at a point in $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.
- (d) the function f has a saddle point in $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \neq 1\}$.
 - 5