Department of Mathematics \& Statistics

Ph.D admission written test

Time: 90 Minutes
July 13, 2017

Total Marks: 105

NAME:

\qquad

Instructions

1. Write your name in CAPITAL letters.
2. We denote by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ and $\mathbb{Z}[i]$ the set of natural numbers, integers, rational numbers, real numbers, complex numbers and Gaussian integers respectively.

For $n \geq 1$, the set \mathbb{Z}_{n} denotes the set $\mathbb{Z} / n \mathbb{Z}$ and S_{n} denotes the permutation group on n-symbols.
We denote by $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, the unit disc in \mathbb{C}.
3. There is a provision for partial marking for questions in section 3 .
4. There are three sections. The first section is True or false and the second section is fill in the blanks.

- In the first section, every correct answer will be awarded 3 marks and a wrong answer will be awarded -3 marks.
- In the second section every correct answer carries 3 marks.

5. The third section has one or more correct answers. In this section

- each question has four choices.
- if a wrong answer is selected in a question then that entire question will carry 0 marks.
- the candidate gets full credit of 6 marks, only if he/she selects all the correct answers and no wrong answers. 3 marks will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.

6. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

1 True/False

1. There is a surjective group homomorphism from S_{4} to S_{3} but there is no surjective group homomorphism from S_{5} to S_{4}.
2. Let $n \geq 2$ and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation of rank 1 . Then there exists a non-zero real number c such that $A^{2}=c A$.
3. Let G be a finite group with a unique element x of order 2 . Then the center $Z(G)$ is a group of even order.
4. Let $p:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $p(x) \leq C$ for all $x \in[a, b]$ and λ be an eigenvalue of the Sturm-Liouville equation

$$
\begin{aligned}
\left(x^{2} u^{\prime}\right)^{\prime}+p(x) u+\lambda u & =0 \text { in }[a, b] \\
u(a)=u(b) & =0 .
\end{aligned}
$$

Then $\lambda \leq-C$.
5. Every solution to the equation $y^{\prime \prime}+x y=0$ has infinitely many zeros in $(0, \infty)$.
6. There exists a linear map $T: \mathbb{R}^{8} \rightarrow \mathbb{R}^{4}$ such that $\operatorname{Ker}(T):=\left\{\left(x_{1}, x_{2}, \ldots, x_{8}\right) \in \mathbb{R}^{8}\right.$: $\left.x_{1}+2 x_{2}+\cdots+8 x_{8}=0\right\}$ and $\operatorname{Im}(T):=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}^{4}: y_{1}+y_{2}+y_{3}+y_{4}=0\right\}$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{3}\left(1-x^{2}\right)(1+x)$ for $x \in \mathbb{R}$ and $\operatorname{Graph}(f):=\{(x, f(x)): x \in \mathbb{R}\} \subseteq \mathbb{R}^{2}$, the graph of f. Then $\operatorname{Graph}(f)$ is homeomorphic to the interval $(-1,1)$.
8. Consider the unit circle $\mathbb{S}^{1}:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ in Euclidean plane \mathbb{R}^{2}. Let $f: \mathbb{S}^{1} \rightarrow \mathbb{R}$ be a real valued continuous function. Then there exists $x \in \mathbb{S}^{1}$ such that $f(x)=f(-x)$.

2 Fill in the blanks

[15 marks]

1. Let U and V are subspaces of \mathbb{R}^{3} such that $U=\operatorname{span}\{(1,1,-1),(2,3,-1),(3,1,-5)\}$ and $V=\operatorname{span}\{(1,1,-3),(3,-2,-8),(2,1,-3)\}$. Then $\operatorname{dim}(U \cap V)$ is \qquad
2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$. Then f is a
\qquad
3. For an infinitely differentiable function $f, \alpha, \beta \in \mathbb{R}$ and $h>0$, if the approximate second derivative

$$
D_{h} f(x)=\frac{\alpha f(x)-5 f(x+h)+4 f(x+2 h)+\beta f(x+3 h)}{h^{2}}
$$

yields error $f^{\prime \prime}(x)-D_{h} f(x)=C h^{k}$ with a constant C independent of h, then k is
\qquad -.
4. The number of solution(s) to the equation $u_{x}+u_{y}=1$ such that $u(x, x)=x$ is
\qquad -.
5. Let $A:=\left\{(x, y) \in \mathbb{R}^{2}: x \in \mathbb{Q}\right.$ and $\left.y \in \mathbb{R} \backslash \mathbb{Q}\right\}$. The number of connected components of $\mathbb{R}^{2} \backslash A$ is \qquad .

3 Questions with one or more correct answers

[66 marks]

1. The equation $4 \sin ^{2} x+10 x^{2}=\cos x$ has
(a) no real solution.
(b) exactly one real solution.
(c) exactly two real solution.
(d) more than two real solution.
2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that $f(0)=0, f\left(\frac{1}{2}\right)=5$, and $|f(z)|<10$ for $|z|<1$. Then
(a) the set $\{z \in \mathbb{C}:|f(z)|=5\}$ is unbounded.
(b) the set $\left\{z \in \mathbb{C}:\left|f^{\prime}(z)\right|=5\right\}$ is a circle of positive radius.
(c) $f(1)=10$.
(d) for all points $z \in \mathbb{C}, f^{\prime \prime}(z)=0$.
3. Let A be a $n \times n$ matrix with complex entries such that $A^{m}=I$ for some positive integer m. Then
(a) A is a diagonalisable matrix.
(b) A is a similar to a triangular matrix but not A need not be a diagonalisable matrix.
(c) all the eigen values of A are roots of unity.
(d) none of the above.
4. Let G be a group of order 75 . Then the group G
(a) is cyclic.
(b) has an element of order 25 .
(c) has an element of order 5 .
(d) has an element of order 15 .
5. Let $R:=C([0,1], \mathbb{R})$ be the ring of all continuous real valued functions on $[0,1]$ and let $I:=\{f \in R: f(1 / 2)=f(1 / 3)=0\}$. Then
(a) I is not an ideal in R.
(b) I is an ideal of R but not a prime ideal in R.
(c) I is a prime ideal but not a maximal ideal in R.
(d) I is a maximal ideal in \mathbb{R}.
6. Let v be non-trivial solution to the equation $y(x)=x-\int_{0}^{x}(x-t) y(t) d t$. Then
(a) $v(n \pi)=0$ for all $n \in \mathbb{Z}$.
(b) the function v has only finitely many zeros.
(c) the function v is unbounded.
(d) there exists a function $u: \mathbb{R} \rightarrow(-\infty, 0)$ such that $u(x)>v(x)$ for all $x \in \mathbb{R}$.
7. Let $(X,\| \|)=\left(\mathbb{R}^{2},\| \|_{\infty}\right)$ and $Y:=\left\{(x, y) \in \mathbb{R}^{2}: x-3 y=0\right\}$. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the linear functional defined by $f(x, y)=x+3 y$. Let $f_{1}, f_{2}: Y \rightarrow \mathbb{R}$ be the linear functionals defined by $f_{1}(x, y)=x$ and $f_{2}(x, y)=3 y$. Then the linear functional f is Hahn-Banach extension of
(a) f_{1} but not f_{2}.
(b) f_{2} but not f_{1}.
(c) both f_{1} and f_{2}.
(d) neither f_{1} nor f_{2}.
8. Let $D: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be a compact operator, which is diagonal with respect to the standard orthonormal basis of $\ell^{2}(\mathbb{N})$. Then
(a) 0 is necessarily an eigenvalue of D.
(b) 0 need not be an eigenvalue of D.
(c) there exists a sequence of eigenvalues of D converging to 0 .
(d) 0 need not be a limit point of eigenvalues of D.
9. Let u be a continuously differentiable function that satisfies

$$
\begin{aligned}
& \frac{\partial u(t, x)}{\partial t}=\frac{\partial u(t, x)}{\partial x}, \quad(t, x) \in(0, \infty) \times(0,1), \\
& u(0, x)= \begin{cases}0, & x \leq 1 / 4, \\
1-\exp \left(\frac{4 e^{-2 /(4 x-1)}}{4 x-3}\right), & x \in(1 / 4,3 / 4), \\
1 & x \geq 3 / 4,\end{cases} \\
& u(t, 0)=0, \quad t \in(0, \infty) .
\end{aligned}
$$

Then the function
(a) u is not well defined.
(b) u is well defined and $u(1 / 4,1)=0$.
(c) u is well defined and $u(1 / 4,1)=1$.
(d) u is well defined and $u(1,1)=0$.
10. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ with its boundary $\partial \Omega$ and $\mathcal{I}_{n} v: \partial \Omega \rightarrow \mathbb{R}$, given by

$$
\left(\mathcal{I}_{n} v\right)(\cos \theta, \sin \theta)=\sum_{j=0}^{n} v(\cos (2 \pi j / n), \sin (2 \pi j / n)) \prod_{\substack{k=0 \\ k \neq j}}^{n} \frac{\theta-\theta_{k}}{\theta_{j}-\theta_{k}}, \quad \theta \in[0,2 \pi],
$$

where $\theta_{j}=2 \pi j / n, j=0, \ldots, n$, is the Lagrange interpolant of a smooth function v at $n+1$ equidistant interpolation points θ_{j}. If u_{n} is the solution of the following boundary value problem

$$
\begin{array}{ll}
\Delta u=0, & \text { in } \Omega, \\
u=\mathcal{I}_{n} v, & \text { on } \partial \Omega,
\end{array}
$$

for $v(x, y)=x^{2}+y^{2}$ then, $\left\|u_{n}-v\right\|_{\infty, \bar{\Omega}}=\max _{(x, y) \in \bar{\Omega}}\left|u_{n}(x, y)-v(x, y)\right|$ satisfies
(a) $\left\|u_{n}-v\right\|_{\infty, \bar{\Omega}}=0$.
(b) $\left\|u_{n}-v\right\|_{\infty, \bar{\Omega}}=1$.
(c) $\lim _{n \rightarrow \infty}\left\|u_{n}-v\right\|_{\infty, \bar{\Omega}}=0$.
(d) $\lim _{n \rightarrow \infty}\left\|u_{n}-v\right\|_{\infty, \bar{\Omega}}=1$.
11. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by $f(x, y):=\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$. Then
(a) the point $(0,0)$ a global minimum for the function f.
(b) the function f does not have a maximum.
(c) the function f attains its maximum at a point in $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.
(d) the function f has a saddle point in $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \neq 1\right\}$.

