Ph.D admission written test

Time: 90 Minutes

Total Marks: 105

May 11, 2017

NAME:

Instructions

- 1. Write your name in **CAPITAL** letters.
- 2. We denote by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} and $\mathbb{Z}[i]$ the set of natural numbers, integers, rational numbers, real numbers, complex numbers and Gaussian integers respectively.

For $n \geq 1$, the set \mathbb{Z}_n denotes the set $\mathbb{Z}/n\mathbb{Z}$ and S_n denotes the permutation group on *n*-symbols.

We denote by $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, the unit disc in \mathbb{C} .

- 3. There is a provision for partial marking for questions in section 3.
- 4. There are three sections. The first section is True or false and the second section is fill in the blanks.
 - In the first section, every correct answer will be awarded 3 marks and a wrong answer will be awarded -3 marks.
 - In the second section correct answer for every blank carries 3 marks. (i.e., If there are k blanks in a question, it will carry 3k marks.)
- 5. The third section has one or more correct answers. In this section
 - each question has four choices.
 - if a wrong answer is selected in a question then that entire question will carry 0 marks.
 - the candidate gets full credit of 6 marks, only if he/she selects all the correct answers and no wrong answers. 3 marks will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.
- 6. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

1

1 True/False

[24 marks]

- 1. When interpolating a continuous function by a polynomial at equally spaced points on a given interval, the polynomial interpolant always converges pointwise to the function as the number of interpolation points increases.
- 2. If a non-singular symmetric matrix is not positive definite, then it can not have a Cholesky factorization.
- 3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $f(x, y) := x^2 y^2$. Then the point (0, 0) is a saddle point of the function f.
- 4. Let $\Omega = \{x = (x_1, x_2) \in \mathbb{R}^2 : ||x|| < 1\}$, then there exists at least one solution $u \in C^2(\overline{\Omega})$ to the problem

$$\Delta u = 0$$
 in Ω , $u(x_1, x_2) = \frac{x_1^2 - x_2^2}{3}$ on $\partial \Omega$

with u(0,0) = 1.

5. Let $f : \mathbb{C} \to \mathbb{C}$ be the map given by $f(z) := \sin z - z$. Then the image of f is \mathbb{C} .

2 Fill in the blanks

1. Suppose that the fixed point iteration

$$x_{m+1} = \frac{x_m(x_m^2 + 15)}{3x_m^2 + 5}, \quad m = 0, 1, \dots$$

converges to some $\alpha > 0$ for a suitable x_0 . Then α is _____ and the order of convergence is _____.

2. For an infinitely differentiable function f and h > 0, if the approximate derivative

$$D_h f(x) = \frac{\alpha f(x) + \beta (f(x+h) - f(x-h)) + \gamma (f(x+2h) - f(x-2h))}{h}$$

yields error $f'(x) - D_h f(x) = Ch^4$, then α is ______, β is ______ and γ is ______.

3. Let a and b be two positive real numbers and $(x_n)_{n=1}^{\infty}$ be the sequence defined by $x_n := (a^n + b^n)^{\frac{1}{n}}$ for n in N. Then $\lim_{n \to \infty} x_n = \underline{\qquad}$.

$\mathbf{2}$

4. Let C[0,1] denote the set of all continuous real valued functions on the interval [0,1]. Let $T: (C[0,1], \|.\|_{\infty}) \to \mathbb{R}$ be defined by

$$T(f) = \int_0^1 tf(t)dt$$

for all $f \in C[0, 1]$. Then ||T|| =_____.

5. Let $S := \{h : \mathbb{D} \to \mathbb{D} : h \text{ is analytic in } \mathbb{D} \text{ such that } h(z)^2 = \overline{h(z)} \text{ for all } z \in \mathbb{D} \}.$ Then the cardinality of $S = \underline{\qquad}$.

3 Questions with one or more correct answers [66 marks]

- 1. Let $n \ge 1$ and $\mathcal{P}_n := \{a_0 + a_1 X + \dots + a_n X^n : a_i \in \mathbb{R}\}$ denote the set of all polynomials of degree at most n. If Q(f) = (f(0) + 3f(1/3) + 3f(2/3) + f(1))/8 is a quadrature rule for approximation of $I(f) = \int_0^1 f(x) dx$, then I(f) - Q(f) = 0 for all f in (a) \mathcal{P}_1 (b) \mathcal{P}_2 (c) \mathcal{P}_3 (d) \mathcal{P}_4
- 2. Given a convex function u on the open interval (a, b) which of the following statements are true:
 - (a) $\frac{u(d)-u(c)}{d-c} \ge \frac{u(e)-u(d)}{e-d}$ provided a < c < d < e < b.
 - (b) $\frac{u(d)-u(c)}{d-c} \le \frac{u(e)-u(d)}{e-d}$ provided a < c < d < e < b.
 - (c) u is Lipschitz continuous in $[c, d] \subset (a, b)$ for $a < c \le d < b$.
 - (d) u may be a nowhere differentiable function in $(c, d) \subset (a, b)$.
- 3. Let $u(x) = x^2$ and v(x) = x|x| for x in \mathbb{R} . Which of the following are true?
 - (a) The functions u and v are linearly dependent.
 - (b) The functions u and v are linearly independent.
 - (c) The functions u and v are solutions of a second order linear homogeneous ODE.
 - (d) The Wronskian of u and v is zero at every point x in \mathbb{R} .
- 4. Which of the following maps are constant?
 - (a) $f: \mathbb{D} \to \mathbb{C}$ such that f is analytic and $f(\mathbb{D}) \subset \mathbb{R}$.
 - (b) $f: \mathbb{D} \to \mathbb{D}$ such that f is analytic and $f([-1/2, 1/2]) = \{0\}$.
 - (c) $f : \mathbb{C} \to \mathbb{C}$ such that f is analytic and $\mathcal{R}e(f)$ is bounded.
 - (d) $f: \mathbb{C} \to \mathbb{C}$ such that f is analytic and f is bounded on the real and imaginary axes.
 - 3

- 5. Let $T : \mathbb{C}^3 \to \mathbb{C}^3$ be a linear transformation with the characteristic polynomial $(X-2)^2(X-1)$ and minimal polynomial (X-2)(X-1). Then which of the following are possible matrices for T (*w.r.t.* suitable bases.)? (a) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- 6. Let V be the vector space of polynomials in the variable X with co-efficients in \mathbb{R} . Which of the following maps $T: V \to V$ are linear transformations?
 - (a) $T(p(X)) = p(X^2)$ for all $p(X) \in V$.
 - (b) $T(p(X)) = (p(X))^2$ for all $p(X) \in V$.
 - (c) $T(p(X)) = X^2 p(X)$ for all $p(X) \in V$.
 - (d) $T(p(X)) = p(X^2 + 1)$ for all $p(X) \in V$.
- 7. For a ring R and an element $a \in R$, we denote the ideal generated by a as $\langle a \rangle$. With this notation, determine which of the following rings are integral domains:
 - (a) $\mathbb{Z}[i]/\langle 2 \rangle$.
 - (b) $\mathbb{Q}[X]/\langle X^4 5X + 4 \rangle$.
 - (c) $\mathbb{Z}_5[X]/\langle X^2 + X + 1 \rangle$.
 - (d) $\mathbb{Z}[X]/\langle 3 \rangle$
- 8. Which of the following pairs of groups are isomorphic?
 - (a) $(\mathbb{R}, +), (\mathbb{C}, +).$
 - (b) $(\mathbb{R}^*, .), (\mathbb{C}^*, .).$
 - (c) $S_3 \times \mathbb{Z}_4, S_4$.
 - (d) $\mathbb{Z}_3 \times \mathbb{Z}_4$, \mathbb{Z}_{12} .
- 9. Let us consider two subspaces in \mathbb{R} ,

$$X = (0,1) \cup \{2\} \cup (4,5) \cup \{6\} \cup \dots \cup (4n,4n+1) \cup \{4n+2\} \cup \dots$$
$$Y = (0,1] \cup (4,5) \cup \{6\} \cup \dots \cup (4n,4n+1) \cup \{4n+2\} \cup \dots$$

with two functions $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ defined as follows:

$$f(x) = \begin{cases} x & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{cases} \text{ and } g(x) = \begin{cases} \frac{x}{2} & \text{if } x \in (0,1] \\ \frac{x-3}{2} & \text{if } x \in (4,5), \\ x-4 & \text{otherwise.} \end{cases}$$

Which of the following statement(s) is(are) true?

- (a) The map f is not a continuous bijective map.
- (b) The map g is not a continuous bijective map.
- (c) The maps f and g are continuous bijective map.
- (d) The spaces X and Y are homeomorphic.
- 10. Consider the closed interval [0,1] in the real line \mathbb{R} and the product space $([0,1]^{\mathbb{N}}, \tau)$, where τ is a topology on $[0,1]^{\mathbb{N}}$. Let $D : [0,1] \longrightarrow [0,1]^{\mathbb{N}}$ be the map defined by $D(x) := (x, x, \dots, x, \dots)$ for $x \in [0,1]$.

Find the correct answer(s). The map D is

- (a) not continuous if τ is the box topology and also not continuous if τ is the product topology.
- (b) continuous if τ is the product topology and also continuous if τ is the box topology.
- (c) continuous if τ is the box topology and not continuous if τ is the product topology.
- (d) continuous if τ is the product topology and not continuous if τ is the box topology.
- 11. Let $C_{00} := \{(x_n) : \text{ there exists } m \in \mathbb{N} \text{ such that } x_n = 0 \text{ for all } n \geq m\}$ and let $\|(x_n)\| := \sup\{|x_n| : n \in \mathbb{N}\}$. Let $Y := \{(x_n) \in C_{00} : \sum_{n=0}^{\infty} x_n = 0\}$. For every $n \geq 1$, we denote by $Y_n := (-1, 1, -1/2, 1/2, -1/3, 1/3, \dots, -1/n, 1/n, 0, \dots) \in Y$
 - and $X_n := (-1, \overline{\frac{1}{n}, \cdots, \frac{1}{n}}, 0, 0, \ldots) \in Y$. Determine which of the following are true:
 - (a) (X_n) is a Cauchy sequence, but (Y_n) is not a Cauchy sequence in Y.
 - (b) (X_n) is not a Cauchy sequence and (Y_n) is a Cauchy sequence in Y.
 - (c) (X_n) and (Y_n) are Cauchy sequences in Y.
 - (d) neither (X_n) nor (Y_n) is a Cauchy sequence in Y.

5