Department of Mathematics \& Statistics

Ph.D admission written test

Time: 90 Minutes
May 11, 2017

Total Marks: 105

NAME:

\qquad

Instructions

1. Write your name in CAPITAL letters.
2. We denote by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ and $\mathbb{Z}[i]$ the set of natural numbers, integers, rational numbers, real numbers, complex numbers and Gaussian integers respectively.
For $n \geq 1$, the set \mathbb{Z}_{n} denotes the set $\mathbb{Z} / n \mathbb{Z}$ and S_{n} denotes the permutation group on n-symbols.
We denote by $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, the unit disc in \mathbb{C}.
3. There is a provision for partial marking for questions in section 3 .
4. There are three sections. The first section is True or false and the second section is fill in the blanks.

- In the first section, every correct answer will be awarded 3 marks and a wrong answer will be awarded -3 marks.
- In the second section correct answer for every blank carries 3 marks. (i.e., If there are k blanks in a question, it will carry $3 k$ marks.)

5. The third section has one or more correct answers. In this section

- each question has four choices.
- if a wrong answer is selected in a question then that entire question will carry 0 marks.
- the candidate gets full credit of 6 marks, only if he/she selects all the correct answers and no wrong answers. 3 marks will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.

6. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

1 True/False

1. When interpolating a continuous function by a polynomial at equally spaced points on a given interval, the polynomial interpolant always converges pointwise to the function as the number of interpolation points increases.
2. If a non-singular symmetric matrix is not positive definite, then it can not have a Cholesky factorization.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by $f(x, y):=x^{2}-y^{2}$. Then the point $(0,0)$ is a saddle point of the function f.
4. Let $\Omega=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\|x\|<1\right\}$, then there exists at least one solution $u \in C^{2}(\bar{\Omega})$ to the problem

$$
\Delta u=0 \quad \text { in } \Omega, \quad u\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}-x_{2}^{2}}{3} \text { on } \partial \Omega
$$

with $u(0,0)=1$.
5. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the map given by $f(z):=\sin z-z$. Then the image of f is \mathbb{C}.

2 Fill in the blanks

[24 marks]

1. Suppose that the fixed point iteration

$$
x_{m+1}=\frac{x_{m}\left(x_{m}^{2}+15\right)}{3 x_{m}^{2}+5}, m=0,1, \ldots
$$

converges to some $\alpha>0$ for a suitable x_{0}. Then α is \qquad and the order of convergence is \qquad .
2. For an infinitely differentiable function f and $h>0$, if the approximate derivative

$$
D_{h} f(x)=\frac{\alpha f(x)+\beta(f(x+h)-f(x-h))+\gamma(f(x+2 h)-f(x-2 h))}{h}
$$

yields error $f^{\prime}(x)-D_{h} f(x)=C h^{4}$, then α is \qquad , β is \qquad and γ is
3. Let a and b be two positive real numbers and $\left(x_{n}\right)_{n=1}^{\infty}$ be the sequence defined by $x_{n}:=\left(a^{n}+b^{n}\right)^{\frac{1}{n}}$ for n in \mathbb{N}. Then $\lim _{n \rightarrow \infty} x_{n}=$ \qquad -.
4. Let $C[0,1]$ denote the set of all continuous real valued functions on the interval $[0,1]$. Let $T:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}$ be defined by

$$
T(f)=\int_{0}^{1} t f(t) d t
$$

for all $f \in C[0,1]$. Then $\|T\|=$ \qquad
5. Let $S:=\left\{h: \mathbb{D} \rightarrow \mathbb{D}: h\right.$ is analytic in \mathbb{D} such that $h(z)^{2}=\overline{h(z)}$ for all $\left.z \in \mathbb{D}\right\}$. Then the cardinality of $S=$ \qquad -

3 Questions with one or more correct answers [66 marks]

1. Let $n \geq 1$ and $\mathcal{P}_{n}:=\left\{a_{0}+a_{1} X+\cdots+a_{n} X^{n}: a_{i} \in \mathbb{R}\right\}$ denote the set of all polynomials of degree at most n. If $Q(f)=(f(0)+3 f(1 / 3)+3 f(2 / 3)+f(1)) / 8$ is a quadrature rule for approximation of $I(f)=\int_{0}^{1} f(x) d x$, then $I(f)-Q(f)=0$ for all f in
(a) \mathcal{P}_{1}
(b) \mathcal{P}_{2}
(c) \mathcal{P}_{3}
(d) \mathcal{P}_{4}
2. Given a convex function u on the open interval (a, b) which of the following statements are true:
(a) $\frac{u(d)-u(c)}{d-c} \geq \frac{u(e)-u(d)}{e-d}$ provided $a<c<d<e<b$.
(b) $\frac{u(d)-u(c)}{d-c} \leq \frac{u(e)-u(d)}{e-d}$ provided $a<c<d<e<b$.
(c) u is Lipschitz continuous in $[c, d] \subset(a, b)$ for $a<c \leq d<b$.
(d) u may be a nowhere differentiable function in $(c, d) \subset(a, b)$.
3. Let $u(x)=x^{2}$ and $v(x)=x|x|$ for x in \mathbb{R}. Which of the following are true?
(a) The functions u and v are linearly dependent.
(b) The functions u and v are linearly independent.
(c) The functions u and v are solutions of a second order linear homogeneous ODE.
(d) The Wronskian of u and v is zero at every point x in \mathbb{R}.
4. Which of the following maps are constant?
(a) $f: \mathbb{D} \rightarrow \mathbb{C}$ such that f is analytic and $f(\mathbb{D}) \subset \mathbb{R}$.
(b) $f: \mathbb{D} \rightarrow \mathbb{D}$ such that f is analytic and $f([-1 / 2,1 / 2])=\{0\}$.
(c) $f: \mathbb{C} \rightarrow \mathbb{C}$ such that f is analytic and $\mathcal{R} e(f)$ is bounded.
(d) $f: \mathbb{C} \rightarrow \mathbb{C}$ such that f is analytic and f is bounded on the real and imaginary axes.
5. Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be a linear transformation with the characteristic polynomial $(X-2)^{2}(X-1)$ and minimal polynomial $(X-2)(X-1)$. Then which of the following are possible matrices for T (w.r.t. suitable bases.)?
(a) $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$
6. Let V be the vector space of polynomials in the variable X with co-efficients in \mathbb{R}. Which of the following maps $T: V \rightarrow V$ are linear transformations?
(a) $T(p(X))=p\left(X^{2}\right)$ for all $p(X) \in V$.
(b) $T(p(X))=(p(X))^{2}$ for all $p(X) \in V$.
(c) $T(p(X))=X^{2} p(X)$ for all $p(X) \in V$.
(d) $T(p(X))=p\left(X^{2}+1\right)$ for all $p(X) \in V$.
7. For a ring R and an element $a \in R$, we denote the ideal generated by a as $\langle a\rangle$. With this notation, determine which of the following rings are integral domains:
(a) $\mathbb{Z}[i] /\langle 2\rangle$.
(b) $\mathbb{Q}[X] /\left\langle X^{4}-5 X+4\right\rangle$.
(c) $\mathbb{Z}_{5}[X] /\left\langle X^{2}+X+1\right\rangle$.
(d) $\mathbb{Z}[X] /\langle 3\rangle$
8. Which of the following pairs of groups are isomorphic?
(a) $(\mathbb{R},+),(\mathbb{C},+)$.
(b) $\left(\mathbb{R}^{*},.\right),\left(\mathbb{C}^{*},.\right)$.
(c) $S_{3} \times \mathbb{Z}_{4}, S_{4}$.
(d) $\mathbb{Z}_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{12}$.
9. Let us consider two subspaces in \mathbb{R},

$$
\begin{aligned}
& X=(0,1) \cup\{2\} \cup(4,5) \cup\{6\} \cup \cdots \cup(4 n, 4 n+1) \cup\{4 n+2\} \cup \cdots \\
& Y=(0,1] \cup(4,5) \cup\{6\} \cup \cdots \cup(4 n, 4 n+1) \cup\{4 n+2\} \cup \cdots,
\end{aligned}
$$

with two functions $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ defined as follows:

$$
f(x)=\left\{\begin{array}{ll}
x & \text { if } x \neq 2, \\
1 & \text { if } x=2 .
\end{array} \quad \text { and } \quad g(x)= \begin{cases}\frac{x}{2} & \text { if } x \in(0,1] \\
\frac{x-3}{2} & \text { if } x \in(4,5) \\
x-4 & \text { otherwise }\end{cases}\right.
$$

Which of the following statement(s) is(are) true?
(a) The map f is not a continuous bijective map.
(b) The map g is not a continuous bijective map.
(c) The maps f and g are continuous bijective map.
(d) The spaces X and Y are homeomorphic.
10. Consider the closed interval $[0,1]$ in the real line \mathbb{R} and the product space $\left([0,1]^{\mathbb{N}}, \tau\right)$, where τ is a topology on $[0,1]^{\mathbb{N}}$. Let $D:[0,1] \longrightarrow[0,1]^{\mathbb{N}}$ be the map defined by $D(x):=(x, x, \cdots, x, \cdots)$ for $x \in[0,1]$.
Find the correct answer(s). The map D is
(a) not continuous if τ is the box topology and also not continuous if τ is the product topology.
(b) continuous if τ is the product topology and also continuous if τ is the box topology.
(c) continuous if τ is the box topology and not continuous if τ is the product topology.
(d) continuous if τ is the product topology and not continuous if τ is the box topology.
11. Let $\mathcal{C}_{00}:=\left\{\left(x_{n}\right)\right.$: there exists $m \in \mathbb{N}$ such that $x_{n}=0$ for all $\left.n \geq m\right\}$ and let $\left\|\left(x_{n}\right)\right\|:=\sup \left\{\left|x_{n}\right|: n \in \mathbb{N}\right\}$. Let $Y:=\left\{\left(x_{n}\right) \in \mathcal{C}_{00}: \sum_{n=0}^{\infty} x_{n}=0\right\}$. For every $n \geq 1$, we denote by $Y_{n}:=(-1,1,-1 / 2,1 / 2,-1 / 3,1 / 3, \ldots,-1 / n, 1 / n, 0, \ldots) \in Y$ and $X_{n}:=(-1, \overbrace{\frac{1}{n}, \cdots, \frac{1}{n}}^{n \text { times }}, 0,0, \ldots) \in Y$. Determine which of the following are true:
(a) $\left(X_{n}\right)$ is a Cauchy sequence, but $\left(Y_{n}\right)$ is not a Cauchy sequence in Y.
(b) $\left(X_{n}\right)$ is not a Cauchy sequence and $\left(Y_{n}\right)$ is a Cauchy sequence in Y.
(c) $\left(X_{n}\right)$ and $\left(Y_{n}\right)$ are Cauchy sequences in Y.
(d) neither $\left(X_{n}\right)$ nor $\left(Y_{n}\right)$ is a Cauchy sequence in Y.

