Department of Mathematics & Statistics

Ph.D admission written test

Time: $1 \ 1/2$ Hours

December 8, 2016

Total Marks: 51

NAME:

Instructions

- 1. Write your name in **CAPITAL** letters.
- 2. We denote by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the set of natural numbers, integers, rational numbers, real numbers and complex numbers respectively.
- 3. Each question carries 3 marks. No negative marks. There is a provision for partial marking for questions in section 2.
- 4. There are two sections. First section is fill in the blanks.
- 5. The second section has one or more correct answers. In this section
 - each question has four choices.
 - if a wrong answer is selected in a question then that entire question will carry 0 marks.
 - the candidate gets full credit, only if he/she selects all the correct answers and no wrong answers. 1 mark will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.
- 6. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

1 Fill in the blanks

- 1. Let \mathbb{Q}, \mathbb{F} denote the set of rational and irrational numbers in \mathbb{R} respectively, where \mathbb{R} is endowed with usual topology. The number of connected components of $(\mathbb{R} \times \mathbb{R}) \setminus (\mathbb{Q} \times \mathbb{F})$ is _____.
- 2. The number of analytic functions on unit disc \mathbb{D} (centered at origin) such that

$$f\left(\frac{1}{n}\right) = (-1)^n \frac{1}{n^2}, \text{ for all } n \in \mathbb{N}$$

is equal to _____.

- 3. Let G be a group. Let x be an element of order 3 and $y \neq e$ be an element of G such that $xyx^{-1} = y^3$. Then the possible orders of the element y are _____.
- 4. Let P = (1,2) and Q = (-3,-4) be two points in \mathbb{R}^2 . If the line PQ is rotated anticlockwise about the point P by an angle 120 degrees then the new coordinates of the point Q is _____.
- 5. Let T be a bounded linear operator on a Hilbert space H and T^* be its adjoint. If T^*T is a diagonal operator (with respect to some orthonormal basis of H) with diagonal entries $\frac{2n-1}{n}$ for $n = 1, 2, 3, \cdots$, then the norm of T is _____.
- 6. Let $A \in M_2(\mathbb{R})$ be a 2 × 2 real matrix defining an invertible linear transformation on \mathbb{R}^2 . Let T be a triangle with one of its vertex at the origin and A(T) be the image of the triangle T under this linear transformation. If α is the area of the triangle T, then the area of the triangle A(T) is _____.

2 Questions with one or more correct answers

- 1. Let $B := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ be the closed ball in \mathbb{R}^2 with center at the origin. Let I denote the unit interval [0, 1]. Which of the following statements are true?
 - (a) There exists a continuous function $f: B \to \mathbb{R}$ which is one-one.
 - (b) There exists a continuous function $f: B \to \mathbb{R}$ which is onto.
 - (c) There exists a continuous function $f: B \to I \times I$ which is one-one.
 - (d) There exists a continuous function $f: B \to I \times I$ which is onto.
- 2. Let $\ell^2 := \{(a_n) : a_n \in \mathbb{R} \text{ and } \sum_{n \geq 1} |a_n|^2 \text{ is finite } \}$ and $\langle (a_n), (b_n) \rangle := \sum_{n \geq 1} a_n b_n$ be the inner product on ℓ^2 . For $n \geq 1$, let $e_n := (0, 0, \dots, 0, 1, 0 \dots)$ where 1 is in *n*-th coordinate and rest of the coordinates are zero. Let $D : \ell^2 \to \ell^2$ be the linear map defined by $De_n = (1/n)e_n$. Which of the following statements are true?
 - (a) D is one-one but not sujective.
 - (b) D is surjective but not one-one.
 - (c) D is one-one with dense range.
 - (d) D is one-one and surjective.
- 3. Let $f: [1,\infty) \to \mathbb{R}$ be a real valued function such that f(1) = 1 and for all $x \in \mathbb{R}$

$$f'(x) = \frac{1}{x^2 + f(x)^2}.$$

Then $\lim_{x \to \infty} f(x)$

- (a) exists and it is equal to zero.
- (b) does not exist.
- (c) exists and lies in the interval $[1, 1 + \frac{\pi}{4}]$.
- (d) exists and lies in the interval $(1 + \frac{\pi}{4}, \infty)$.

4. Define two linear functionals \mathcal{I} and \mathcal{J} on C([0,1]) by the integral and the quadrature rule:

$$\mathcal{I}f = \int_0^1 \frac{f(x)}{\sqrt{x}} dx, \quad \mathcal{J}f = bf(a).$$

If $\mathcal{I}f = \mathcal{J}f$ for all $f \in \mathcal{P}_1$, the space of polynomials of degree 1 or less, then the values of a and b are

- (a) a = 1, b = 1
- (b) a = 1/2, b = 1
- (c) a = 1/3, b = 2
- (d) a = 2/3, b = 2
- 5. For numerical solution of the initial value problem y' = f(t, y) on [0, 1] with $y(0) = y_0$, the linear two-step method

$$y_{n+1} = -4y_n + 5y_{n-1} + h(4f(t_n, y_n) + 2f(t_{n-1}, y_{n-1}))$$

with $t_n = nh, y_n = y(t_n)$ is

- (a) consistent and stable.
- (b) not consistent but stable.
- (c) consistent but not stable.
- (d) not consistent and not stable.
- 6. A unique solution to the differential equation

$$y = x\frac{dy}{dx} - \left(\frac{dy}{dx}\right)^2$$

passing through (x_0, y_0) does not exist

- (a) if $x_0^2 > 4y_0$.
- (b) if $x_0^2 = 4y_0$.
- (c) if $x_0^2 < 4y_0$.
- (d) for any (x_0, y_0) .
- 7. If y_1 , y_2 are two independent solutions of the equation $y'' + a(x)y' + |x|(x^2 2)y = 0$ where a(x) is a continuous function, then following hold true:
 - (a) the number of zeros of y_2 between two consecutive zeros of y_1 is 1 only if a(x) > 0 for all $x \in \mathbb{R}$.
 - (b) the number of zeros of y_2 between two consecutive zeros of y_1 is 1 only if $a(x) \neq 0$ for all $x \in \mathbb{R}$.
 - (c) the number of zeros of y_2 between two consecutive zeros of y_1 is 1 if $a(x) \neq 0$ for all $x \in \mathbb{R}$.
 - (d) the number of zeros of y_2 between two consecutive zeros of y_1 is always 1.

8. Let $\Omega = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + (y - 4)^2 < 4\}$ with its boundary $\partial\Omega$ and let u(x, y) be the solution of the following boundary value problem

$$\begin{aligned} \frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} &= 0, \quad (x,y) \in \Omega, \\ u(x,y) &= \log \sqrt{x^2 + y^2}, \quad (x,y) \in \partial \Omega. \end{aligned}$$

Then $\min\{u(x,y) \mid (x,y) \in \overline{\Omega}\}$ is equal to

- (a) $\log \sqrt{2}$.
- (b) $\log 2$.
- (c) $\sqrt{2}$.
- (d) 2.
- 9. Let u be a continuously differentiable function that satisfies

$$\begin{split} \frac{\partial u(t,x)}{\partial t} &+ \frac{\partial u(t,x)}{\partial x} = 0, \quad (t,x) \in (0,\infty) \times (0,1), \\ u(0,x) &= \begin{cases} 0, & x \leq 1/4, \\ 1 - \exp\left(\frac{4e^{-2/(4x-1)}}{4x-3}\right), & x \in (1/4,3/4), \\ 1, & x \geq 3/4, \\ u(t,0) &= 0, \quad t \in (0,\infty). \end{split}$$

Then

- (a) u is not well defined because the boundary value at x = 1 is not given.
- (b) u is well defined and u(1/4, 1) = 0.
- (c) u is well defined and u(1/4, 1) = 1.
- (d) u is well defined and u(1,1) = 0.
- 10. Let $f: \mathbb{C}^* \to \mathbb{C}$ be the function defined by $f(z) := z \sin(\frac{1}{z})$. Then $\lim_{z\to 0} f(z)$
 - (a) is equal to zero.
 - (b) does not exist.
 - (c) is infinite.
 - (d) is finite but not equal to zero.
- 11. Let $\mathbb{Z}[i] := \{a + ib \in \mathbb{C} : a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers. Let I := (4 + 5i) be the principal ideal generated by 4 + 5i and $R := \mathbb{Z}[i]/I = \{(a + ib) + I : a + ib \in \mathbb{Z}[i]\}$ be the quotient ring. Then the ring S is
 - (a) an integral domain.
 - (b) not an integral domain.
 - (c) a field.
 - (d) an integral domain but not a field.