Department of Mathematics \& Statistics

Ph.D admission written test

Time: 1 1/2 Hours
December 8, 2016

Total Marks: 51

NAME:

\qquad

Instructions

1. Write your name in CAPITAL letters.
2. We denote by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} denote the set of natural numbers, integers, rational numbers, real numbers and complex numbers respectively.
3. Each question carries 3 marks. No negative marks. There is a provision for partial marking for questions in section 2 .
4. There are two sections. First section is fill in the blanks.
5. The second section has one or more correct answers. In this section

- each question has four choices.
- if a wrong answer is selected in a question then that entire question will carry 0 marks.
- the candidate gets full credit, only if he/she selects all the correct answers and no wrong answers. 1 mark will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.

6. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

1 Fill in the blanks

1. Let \mathbb{Q}, \mathbb{F} denote the set of rational and irrational numbers in \mathbb{R} respectively, where \mathbb{R} is endowed with usual topology. The number of connected components of $(\mathbb{R} \times \mathbb{R}) \backslash(\mathbb{Q} \times \mathbb{F})$ is \qquad .
2. The number of analytic functions on unit disc \mathbb{D} (centered at origin) such that

$$
f\left(\frac{1}{n}\right)=(-1)^{n} \frac{1}{n^{2}}, \text { for all } n \in \mathbb{N}
$$

is equal to \qquad .
3. Let G be a group. Let x be an element of order 3 and $y(\neq e)$ be an element of G such that $x y x^{-1}=y^{3}$. Then the possible orders of the element y are \qquad .
4. Let $P=(1,2)$ and $Q=(-3,-4)$ be two points in \mathbb{R}^{2}. If the line $P Q$ is rotated anticlockwise about the point P by an angle 120 degrees then the new coordinates of the point Q is \qquad $-$
5. Let T be a bounded linear operator on a Hilbert space H and T^{*} be its adjoint. If $T^{*} T$ is a diagonal operator (with respect to some orthonormal basis of H) with diagonal entries $\frac{2 n-1}{n}$ for $n=1,2,3, \cdots$, then the norm of T is \qquad -
6. Let $A \in M_{2}(\mathbb{R})$ be a 2×2 real matrix defining an invertible linear transformation on \mathbb{R}^{2}. Let T be a triangle with one of its vertex at the origin and $A(T)$ be the image of the triangle T under this linear transformation. If α is the area of the triangle T, then the area of the triangle $A(T)$ is \qquad .

2 Questions with one or more correct answers

1. Let $B:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ be the closed ball in \mathbb{R}^{2} with center at the origin. Let I denote the unit interval $[0,1]$. Which of the following statements are true?
(a) There exists a continuous function $f: B \rightarrow \mathbb{R}$ which is one-one.
(b) There exists a continuous function $f: B \rightarrow \mathbb{R}$ which is onto.
(c) There exists a continuous function $f: B \rightarrow I \times I$ which is one-one.
(d) There exists a continuous function $f: B \rightarrow I \times I$ which is onto.
2. Let $\ell^{2}:=\left\{\left(a_{n}\right): a_{n} \in \mathbb{R}\right.$ and $\sum_{n \geq 1}\left|a_{n}\right|^{2}$ is finite $\}$ and $\left\langle\left(a_{n}\right),\left(b_{n}\right)\right\rangle:=\sum_{n \geq 1} a_{n} b_{n}$ be the inner product on ℓ^{2}. For $n \geq 1$, let $e_{n}:=(0,0, \ldots, 0,1,0 \ldots)$ where 1 is in n-th coordinate and rest of the coordinates are zero. Let $D: \ell^{2} \rightarrow \ell^{2}$ be the linear map defined by $D e_{n}=(1 / n) e_{n}$. Which of the following statements are true?
(a) D is one-one but not sujective.
(b) D is surjective but not one-one.
(c) D is one-one with dense range.
(d) D is one-one and surjective.
3. Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a real valued function such that $f(1)=1$ and for all $x \in \mathbb{R}$

$$
f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}}
$$

Then $\lim _{x \rightarrow \infty} f(x)$
(a) exists and it is equal to zero.
(b) does not exist.
(c) exists and lies in the interval $\left[1,1+\frac{\pi}{4}\right]$.
(d) exists and lies in the interval $\left(1+\frac{\pi}{4}, \infty\right)$.
4. Define two linear functionals \mathcal{I} and \mathcal{J} on $C([0,1])$ by the integral and the quadrature rule:

$$
\mathcal{I} f=\int_{0}^{1} \frac{f(x)}{\sqrt{x}} d x, \quad \mathcal{J} f=b f(a)
$$

If $\mathcal{I} f=\mathcal{J} f$ for all $f \in \mathcal{P}_{1}$, the space of polynomials of degree 1 or less, then the values of a and b are
(a) $a=1, b=1$
(b) $a=1 / 2, b=1$
(c) $a=1 / 3, b=2$
(d) $a=2 / 3, b=2$
5. For numerical solution of the initial value problem $y^{\prime}=f(t, y)$ on $[0,1]$ with $y(0)=y_{0}$, the linear two-step method

$$
y_{n+1}=-4 y_{n}+5 y_{n-1}+h\left(4 f\left(t_{n}, y_{n}\right)+2 f\left(t_{n-1}, y_{n-1}\right)\right)
$$

with $t_{n}=n h, y_{n}=y\left(t_{n}\right)$ is
(a) consistent and stable.
(b) not consistent but stable.
(c) consistent but not stable.
(d) not consistent and not stable.
6. A unique solution to the differential equation

$$
y=x \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}
$$

passing through $\left(x_{0}, y_{0}\right)$ does not exist
(a) if $x_{0}^{2}>4 y_{0}$.
(b) if $x_{0}^{2}=4 y_{0}$.
(c) if $x_{0}^{2}<4 y_{0}$.
(d) for any $\left(x_{0}, y_{0}\right)$.
7. If y_{1}, y_{2} are two independent solutions of the equation $y^{\prime \prime}+a(x) y^{\prime}+|x|\left(x^{2}-2\right) y=0$ where $a(x)$ is a continuous function, then following hold true:
(a) the number of zeros of y_{2} between two consecutive zeros of y_{1} is 1 only if $a(x)>0$ for all $x \in \mathbb{R}$.
(b) the number of zeros of y_{2} between two consecutive zeros of y_{1} is 1 only if $a(x) \neq 0$ for all $x \in \mathbb{R}$.
(c) the number of zeros of y_{2} between two consecutive zeros of y_{1} is 1 if $a(x) \neq 0$ for all $x \in \mathbb{R}$.
(d) the number of zeros of y_{2} between two consecutive zeros of y_{1} is always 1 .
8. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 x^{2}+(y-4)^{2}<4\right\}$ with its boundary $\partial \Omega$ and let $u(x, y)$ be the solution of the following boundary value problem

$$
\begin{array}{cl}
\frac{\partial^{2} u(x, y)}{\partial x^{2}}+\frac{\partial^{2} u(x, y)}{\partial y^{2}}=0, & (x, y) \in \Omega \\
u(x, y)=\log \sqrt{x^{2}+y^{2}}, & (x, y) \in \partial \Omega
\end{array}
$$

Then $\min \{u(x, y) \mid(x, y) \in \bar{\Omega}\}$ is equal to
(a) $\log \sqrt{2}$.
(b) $\log 2$.
(c) $\sqrt{2}$.
(d) 2 .
9. Let u be a continuously differentiable function that satisfies

$$
\begin{aligned}
& \frac{\partial u(t, x)}{\partial t}+\frac{\partial u(t, x)}{\partial x}=0, \quad(t, x) \in(0, \infty) \times(0,1) \\
& u(0, x)= \begin{cases}0, & x \leq 1 / 4 \\
1-\exp \left(\frac{4 e^{-2 /(4 x-1)}}{4 x-3}\right), & x \in(1 / 4,3 / 4) \\
1, & x \geq 3 / 4\end{cases} \\
& u(t, 0)=0, \quad t \in(0, \infty)
\end{aligned}
$$

Then
(a) u is not well defined because the boundary value at $x=1$ is not given.
(b) u is well defined and $u(1 / 4,1)=0$.
(c) u is well defined and $u(1 / 4,1)=1$.
(d) u is well defined and $u(1,1)=0$.
10. Let $f: \mathbb{C}^{*} \rightarrow \mathbb{C}$ be the function defined by $f(z):=z \sin \left(\frac{1}{z}\right)$. Then $\lim _{z \rightarrow 0} f(z)$
(a) is equal to zero.
(b) does not exist.
(c) is infinite.
(d) is finite but not equal to zero.
11. Let $\mathbb{Z}[i]:=\{a+i b \in \mathbb{C}: a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers. Let $I:=(4+5 i)$ be the principal ideal generated by $4+5 i$ and $R:=\mathbb{Z}[i] / I=\{(a+i b)+I: a+i b \in \mathbb{Z}[i]\}$ be the quotient ring. Then the ring S is
(a) an integral domain.
(b) not an integral domain.
(c) a field.
(d) an integral domain but not a field.

