Department of Mathematics & Statistics

Ph.D admission written test

Time: 1 Hour

Total Marks: 36

NAME:

Instructions

- 1. Write your name in **CAPITAL** letters.
- 2. We denote by N, Z, Q, ℝ and ℂ the set of natural numbers, integers, rational numbers, real numbers and complex numbers respectively.
- 3. Each question carries 3 marks. No negative marks.
- 4. There are two multiple choice questions, six fill in the blanks questions, two true or false questions and two computational questions.
- 5. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.
- 1. If z = z(x, y) satisfies

$$F\left(\frac{x}{y},\frac{z}{y}\right) = 0,$$

where F is an arbitrary differentiable function, then z satisfies the first order partial differential equation _____.

Ans.
$$xz_x + yz_y = z/px + qy = z$$

2. Consider the data given below:

 x
 -2
 -1
 0
 1
 3

 y
 17
 9
 3
 -1
 -3

The degree of the polynomial which interpolates the data is _____.

Ans. 2

3. Let $y = \sin(x) + xe^x$ be a solution of the fourth order ordinary differential equation $a_4 y^{(4)} + a_3 y^{(3)} + a_2 y^{(2)} + a_1 y^{(1)} + a_0 y = 0$, where $a_i, i = 0, 1, \dots, 4$ are constants. Then $a_4 + a_2 =$ _____.

Ans. 3

July 1, 2016

4. True or False. Let (a_1, a_2, a_3, a_4) be a non-zero vector in \mathbb{R}^4 . There exists a one-one linear map $T : \mathbb{R}^4 \to \mathbb{R}^4$ such that $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 0\}$ is the image of T.

Ans: False

- True or False. If A and B are two n × n matrices with same characteristic and same minimal polynomial then they have the same Jordan form.
 Ans: False
- 6. Let $f : \mathbb{Q} \to \mathbb{Z}$ be a homomorphism of additive groups. Then f(r) =______ for all $r \in \mathbb{Q}$.
 - 7. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a differentiable function such that $|f(x)| \leq ||x||^{2016}$ for $x \in \mathbb{R}^2$. Then $(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)) =$ _____.

Ans. Here f(0,0) = 0. Then from the limit definition it follows that f'(0,0) is the zero map $\mathbb{R}^2 \longrightarrow \mathbb{R}$.

- 8. Compute the line integral $\int_{\gamma} x dz$ where γ is the line segment from 0 to 1 + i. Ans: (1+i)/2.
- 9. Suppose $f : \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{D}$ is analytic map such that f(0) = 0 and $f(\frac{1}{2}) = \frac{1}{2\sqrt{2}} + i\frac{1}{2\sqrt{2}}$. Find f(1/4).
- 10. Let A and B be non-empty subsets of real numbers. Which of the following statement(s) is(are) equivalent to saying that $LUB(A) \leq LUB(B)$?
 - (a) For every $a \in A$ and $\epsilon > 0$ there exists a $b \in B$ such that $a < b + \epsilon$.
 - (b) For every $b \in B$ there exists an $a \in A$ such that $a \leq b$.
 - (c) There exists $b \in B$ such that $a \leq b$ for all $a \in A$.
 - (d) There exists $a \in A$ such that $a \leq b$ for all $b \in B$. Ans: (a).
- 11. Let τ_1 be the topology on \mathbb{R} generated by the base $\mathcal{B} = \{[a, b) : a < b \in \mathbb{R}\}$. If τ_0 is the standard topology on \mathbb{R} and $\mathrm{Id} : \mathbb{R} \to \mathbb{R}$ is the identity mapping then
 - (a) Id : $(\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_0)$ is continuous but not an open mapping.
 - (b) Id: $(\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_0)$ is an open mapping but not continuous.
 - (c) Id : $(\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_0)$ is a homeomorphism.
 - (d) Id: $(\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_0)$ is neither continuous nor an open mapping. Ans: (a)
- 12. Let \mathbb{F} be the set of irrational numbers in \mathbb{R} and $X := \mathbb{R}^2 \setminus (\mathbb{F} \times \mathbb{F})$ with usual subspace topology of \mathbb{R}^2 . The number of connected components of X is _____.