Department of Mathematics \& Statistics

Ph.D admission written test

Time: 1 Hour
July 1, 2016
Total Marks: 36

NAME:

\qquad

Instructions

1. Write your name in CAPITAL letters.
2. We denote by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} the set of natural numbers, integers, rational numbers, real numbers and complex numbers respectively.
3. Each question carries 3 marks. No negative marks.
4. There are two multiple choice questions, six fill in the blanks questions, two true or false questions and two computational questions.
5. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.
6. If $z=z(x, y)$ satisfies

$$
F\left(\frac{x}{y}, \frac{z}{y}\right)=0
$$

where F is an arbitrary differentiable function, then z satisfies the first order partial differential equation \qquad .

Ans. $x z_{x}+y z_{y}=z / p x+q y=z$
2. Consider the data given below:

x	-2	-1	0	1	3
y	17	9	3	-1	-3

The degree of the polynomial which interpolates the data is \qquad .
Ans. 2
3. Let $y=\sin (x)+x e^{x}$ be a solution of the fourth order ordinary differential equation $a_{4} y^{(4)}+a_{3} y^{(3)}+a_{2} y^{(2)}+a_{1} y^{(1)}+a_{0} y=0$, where $a_{i}, i=0,1, \cdots, 4$ are constants. Then $a_{4}+a_{2}=$ \qquad .

Ans. 3
4. True or False. Let $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ be a non-zero vector in \mathbb{R}^{4}. There exists a one-one linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=0\right\}$ is the image of T.
Ans: False
5. True or False. If A and B are two $n \times n$ matrices with same characteristic and same minimal polynomial then they have the same Jordan form.
Ans: False
6. Let $f: \mathbb{Q} \rightarrow \mathbb{Z}$ be a homomorphism of additive groups. Then $f(r)=$ \qquad for all $r \in \mathbb{Q}$.
7. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a differentiable function such that $|f(x)| \leq\|x\|^{2016}$ for $x \in \mathbb{R}^{2}$. Then $\left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right)=$ \qquad -.
Ans. Here $f(0,0)=0$. Then from the limit definition it follows that $f^{\prime}(0,0)$ is the zero $\operatorname{map} \mathbb{R}^{2} \longrightarrow \mathbb{R}$.
8. Compute the line integral $\int_{\gamma} x d z$ where γ is the line segment from 0 to $1+i$.

Ans: $(1+\mathrm{i}) / 2$.
9. Suppose $f: \mathbb{D}:=\{z \in \mathbb{C}:|z|<1\} \rightarrow \mathbb{D}$ is analytic map such that $f(0)=0$ and $f\left(\frac{1}{2}\right)=\frac{1}{2 \sqrt{2}}+i \frac{1}{2 \sqrt{2}}$. Find $f(1 / 4)$.
10. Let A and B be non-empty subsets of real numbers. Which of the following statement(s) is(are) equivalent to saying that $\mathrm{LUB}(A) \leq \mathrm{LUB}(B)$?
(a) For every $a \in A$ and $\epsilon>0$ there exists a $b \in B$ such that $a<b+\epsilon$.
(b) For every $b \in B$ there exists an $a \in A$ such that $a \leq b$.
(c) There exists $b \in B$ such that $a \leq b$ for all $a \in A$.
(d) There exists $a \in A$ such that $a \leq b$ for all $b \in B$. Ans: (a).
11. Let τ_{1} be the topology on \mathbb{R} generated by the base $\mathcal{B}=\{[a, b): a<b \in \mathbb{R}\}$. If τ_{0} is the standard topology on \mathbb{R} and $\operatorname{Id}: \mathbb{R} \rightarrow \mathbb{R}$ is the identity mapping then
(a) Id : $\left(\mathbb{R}, \tau_{1}\right) \rightarrow\left(\mathbb{R}, \tau_{0}\right)$ is continuous but not an open mapping.
(b) Id $:\left(\mathbb{R}, \tau_{1}\right) \rightarrow\left(\mathbb{R}, \tau_{0}\right)$ is an open mapping but not continuous.
(c) Id $:\left(\mathbb{R}, \tau_{1}\right) \rightarrow\left(\mathbb{R}, \tau_{0}\right)$ is a homeomorphism.
(d) Id : $\left.\mathbb{R}, \tau_{1}\right) \rightarrow\left(\mathbb{R}, \tau_{0}\right)$ is neither continuous nor an open mapping. Ans: (a)
12. Let \mathbb{F} be the set of irrational numbers in \mathbb{R} and $X:=\mathbb{R}^{2} \backslash(\mathbb{F} \times \mathbb{F})$ with usual subspace topology of \mathbb{R}^{2}. The number of connected components of X is \qquad .

