Department of Mathematics \& Statistics

Ph.D admission written test

Time: 2 Hours
May 3, 2016
Total Marks: 75

NAME:

\qquad

Instructions

1. Write your name in CAPITAL letters.
2. We denote by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} denote the set of natural numbers, integers, rational numbers, real numbers and complex numbers respectively.
3. Each question carries 3 marks. No negative marks. There is a provision for partial marking for questions in section 2 .
4. There are two sections. First section is fill in the blanks.
5. The second section has one or more correct answers. In this section

- each question has four choices.
- if a wrong answer is selected in a question then that entire question will carry 0 marks.
- the candidate gets full credit, only if he/she selects all the correct answers and no wrong answers. 1 mark will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.

6. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

1 Fill in the blanks

1. Let A be a 3×3 real matrix such that

$$
A\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right), A\left(\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-2 \\
4 \\
-2
\end{array}\right) \text { and } A\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
6
\end{array}\right) .
$$

Let $Q=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & 2\end{array}\right)$. Then the trace of the matrix $A Q$ is \qquad -
2. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear map such that $\left\{(x, y, z, w) \in \mathbb{R}^{4}: x+y+z+w=0\right\}$ is the kernel of T. If 1 is an eigenvalue of T, then the rank of the linear transformation $T-I_{4}$ is \qquad -
3. Let A be a 3×3 real singular matrix such that $A v=v$ for a nonzero vector $v \in \mathbb{R}^{3}$. If $\frac{2}{5}$ is an eigenvalue of A and $\alpha A^{3}-7 A^{2}+2 A=0$, then the value of α is \qquad .
4. Let S be the set of all 2×2 matrices with entries in the set $\{0,1\}$ such that the determinant is nonzero. Then the number of the elements in S is \qquad .
5. The radius of convergence of the power series $\sum_{n=1}^{\infty}(\log n)^{2} z^{n}$ is \qquad .
6. Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be the path defined by

$$
\gamma(t):= \begin{cases}1+4 t & \text { if } 0 \leq t \leq \frac{1}{4} \\ 2+i 2(4 t-1) & \text { if } \frac{1}{4} \leq t \leq \frac{1}{2} \\ \frac{3}{2}+2 i+\frac{1}{2} e^{i \pi(2 t-1)} & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

If $f(z)=e^{z}$ for all $z \in \mathbb{C}$, then the value of the path integral $\int_{\gamma} f$ is \qquad .
7. The number of elements of order 5 in the symmetric group S_{7} is \qquad .
8. If y is a continuous function on \mathbb{R} such that

$$
y(t)+2 \int_{0}^{t} y(t-\tau) e^{2 \tau} d \tau=\cosh (2 t)
$$

then $y(t)$ is \qquad .
9. Consider a quadrature formula for f in the interval $[-1,1]$

$$
\int_{-1}^{1} f(x) d x \approx \omega_{0} f(-\alpha)+\omega_{1} f(0)+\omega_{2} f(\alpha)
$$

where α and $\omega_{i}, i=0,1,2$ are suitable positive constants. If this formula is exact whenever f is an arbitrary polynomial of degree at most 5 , then $5 \alpha^{2}$ is \qquad . (Hint: Legendre polynomial of degree n is $\left.P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}\right)$
10. If the Newton-Raphson method is used on the function $f(x)=x^{3}+1$ starting with $x_{0}=1$, then the iterate x_{2} is \qquad $-$
11. Suppose that the fixed point iteration method

$$
x_{i+1}=\frac{x_{i}\left(x_{i}^{2}+12\right)}{3 x_{i}^{2}+4}, \quad i=0,1,2, \cdots
$$

converges to some $\alpha>0$ for a suitable x_{0}. Then α is \qquad and the order of the convergence is \qquad -.
12. Let $y(x)$ be the solution of the ordinary differential equation

$$
y^{\prime \prime}-y=1
$$

that remains bounded as $x \rightarrow \infty$ and passes through the origin. Then $y(x)$ is \qquad .
13. Let $\Omega=\left\{(x, y):(x-1)^{2}+(y-1)^{2}<4\right\}$ and $\partial \Omega$ be its boundary. Let u be the solution of the Dirichlet problem

$$
\begin{aligned}
& \nabla^{2} u=0 \quad \text { in } \Omega \\
& u=x \quad \text { in } \partial \Omega
\end{aligned}
$$

If $M=\max _{(x, y) \in \Omega \cup \partial \Omega} u(x, y)$, then $M+u(1,1)$ is \qquad .
14. Let $L>0$ and $u(x, t)$ be the solution of the heat equation

$$
\begin{gathered}
u_{t}=u_{x x}, \quad 0<x<L, t>0 \\
u(x, 0)=T_{1}+\sin \left(\frac{\pi x}{2 L}\right)\left(T_{2}-T_{1}\right), \quad 0 \leq x \leq L
\end{gathered}
$$

and

$$
u(0, t)=T_{1}, u(L, t)=T_{2}, \quad t \geq 0
$$

where T_{1} and T_{2} are constants. Then $\lim _{t \rightarrow \infty} u(x, t)$ is \qquad .
15. Consider the boundary value problem

$$
\left(x y^{\prime}\right)^{\prime}+\lambda \frac{y}{x}=0, \quad y(1)=y^{\prime}(e)=0, \quad \lambda>0
$$

The lowest value of λ for which the boundary value problem admits a nontrivial solution is \qquad .

2 Questions with one or more correct answers

1. Let $f:(0,1] \rightarrow \mathbb{R}$ be a function. Which of the following statement(s) is(are) true.
(a) If f is continuous, then f is bounded.
(b) If f is uniformly continuous, then f is bounded.
(c) If f is continuous and $\left(x_{n}\right)$ is a Cauchy sequence in $(0,1]$, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.
(d) If f is uniformly continuous and $\left(x_{n}\right)$ is a Cauchy sequence in $(0,1]$, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.
2. Let $f, g:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x):= \begin{cases}\frac{1}{q} & \text { if } x=\frac{p}{q} \text { and } \operatorname{gcd}(p, q)=1 ; p, q \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
g(x):= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Which of the following statement(s) is(are) true?
(a) Both f and $g \circ f$ are Riemann integrable.
(b) Both f and $g \circ f$ are not Riemann integrable.
(c) f is Riemann integrable but $g \circ f$ is not Riemann integrable.
(d) f is not Riemann integrable but $g \circ f$ is Riemann intergrable.
3. Let $f_{n}, g_{n}:(0,1) \rightarrow \mathbb{R}$ be the sequences of functions defined by

$$
f_{n}(x):=x^{n} \text { and } g_{n}(x):=x^{n}\left(1-x^{n}\right)
$$

for $x \in(0,1)$ and $n=1,2, \cdots \cdots$. Then which of the following statement(s) is(are) true?
(a) Both $\left(f_{n}\right)$ and $\left(g_{n}\right)$ converge uniformly in $(0,1)$.
(b) $\left(f_{n}\right)$ converges uniformly in $(0,1)$ but $\left(g_{n}\right)$ does not converge uniformly in $(0,1)$.
(c) $\left(g_{n}\right)$ converges uniformly in $(0,1)$ but $\left(f_{n}\right)$ does not converge uniformly in $(0,1)$.
(d) Both $\left(f_{n}\right)$ and $\left(g_{n}\right)$ do not converge uniformly in $(0,1)$
4. Let $\Omega:=\left\{w \in \mathbb{C}:\left|w-\frac{1}{4}\right|<\frac{1}{8}\right\}$ and $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that $f(z) \notin \Omega$ for all z in \mathbb{C}. If $f(0)=1$, then which of the following statement(s) is(are) true?
(a) $f(z)=1+z$ for all z in \mathbb{C}.
(b) $f(z)=1+z+z^{2}+\cdots+z^{n}$ for all z in \mathbb{C} and for some $n \geq 2$.
(c) $f(z)=e^{z}$ for all z in \mathbb{C}.
(d) $f(z)=1$ for all z in \mathbb{C}.
5. The ring $\mathbb{Z}[X]:=\left\{a_{0}+a_{1} X+\cdots+a_{n} X^{n}: a_{i} \in \mathbb{Z}\right.$ for $\left.0 \leq i \leq n, n \in \mathbb{N}\right\}$ is
(a) an Euclidean domain.
(b) a PID.
(c) a UFD but not a PID.
(d) neither a PID nor a UFD
6. Consider the usual topologies on \mathbb{R} and \mathbb{R}^{2}. Then \mathbb{R} is homeomorphic to
(a) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.
(b) $\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{2}+\frac{y^{2}}{4}=1\right\}$.
(c) $\left\{(x, y) \in \mathbb{R}^{2}: x-y^{2}=1\right\}$.
(d) $\left\{(x, y) \in \mathbb{R}^{2}: \frac{y^{2}}{2}-\frac{x^{2}}{4}=1\right\}$.
7. Consider $G:=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}\right.$ and $\left.a d-b c \neq 0\right\}$ as a subset of \mathbb{R}^{4} with usual topology on \mathbb{R}^{4}. Then which of the following statement(s) is(are) true?
(a) G is open and dense in \mathbb{R}^{4}.
(b) G is open but not dense in \mathbb{R}^{4}.
(c) G is not open but dense in \mathbb{R}^{4}.
(d) G is neither open nor dense in \mathbb{R}^{4}.
8. In $\ell^{2}:=\left\{\left(a_{n}\right): \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$ which of the following statement(s) is(are) true?
(a) Every bounded sequence in ℓ^{2} has a convergent subsequence.
(b) ℓ^{2} has a proper closed subspace.
(c) There exists a nonzero continuous linear functional on ℓ^{2}.
(d) If $\left(x_{n}\right)$ is a Cauchy sequence in ℓ^{2}, then the sequence $\left(f\left(x_{n}\right)\right)$ is Cauchy for every bounded linear functionals f on ℓ^{2}.
9. Let $X=C[0,1]$ be the space of all continuous real valued functions on $[0,1]$. On X, we define two norms: For f in X,

$$
\|f\|_{\infty}:=\sup \{|f(t)|: t \in[0,1]\} \quad \text { and } \quad\|f\|_{1}:=\int_{0}^{1}|f(t)| d t
$$

Let $X_{1}:=\left(X,\| \|_{1}\right)$ and $X_{2}:=\left(X,\| \|_{\infty}\right)$. Let $T: X \rightarrow \mathbb{R}$ be the linear map defined by $T(f):=f(0)$. Which of the following statement(s) is(are) true?
(a) T is bounded on X_{1} but not on X_{2}.
(b) T is bounded on X_{2} but not on X_{1}.
(c) T is bounded on X_{1} and X_{2}.
(d) T is neither bounded on X_{1} nor on X_{2}.
10. Let f be an arbitrary continuously differentiable function. If the ordinary differential equation

$$
\left(3 y^{2}-x\right) f\left(x+y^{2}\right)+2 y\left(y^{2}-3 x\right) f\left(x+y^{2}\right) y^{\prime}=0
$$

is exact, then which of the following relation between the function f and its derivative f^{\prime} is true?
(a) $x f^{\prime}(x)+3 f(x)=0$.
(b) $x f^{\prime}(x)-3 f(x)=0$.
(c) $f^{\prime}(x)+3 f(x)=0$.
(d) $f^{\prime}(x)-3 f(x)=0$.

