Department of Mathematics & Statistics

Ph.D admission written test

Time: 2 Hours

Total Marks: 75

NAME:

Instructions

- 1. Write your name in **CAPITAL** letters.
- 2. We denote by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the set of natural numbers, integers, rational numbers, real numbers and complex numbers respectively.
- 3. Each question carries 3 marks. **No** negative marks. There is a provision for partial marking for questions in section 2.
- 4. There are two sections. First section is fill in the blanks.
- 5. The second section has one or more correct answers. In this section
 - each question has four choices.
 - if a wrong answer is selected in a question then that entire question will carry 0 marks.
 - the candidate gets full credit, only if he/she selects all the correct answers and no wrong answers. 1 mark will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.
- 6. These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.

1 Fill in the blanks

1. Let A be a 3×3 real matrix such that

$$A\begin{pmatrix}2\\-1\\0\end{pmatrix} = \begin{pmatrix}2\\-1\\0\end{pmatrix}, A\begin{pmatrix}-1\\2\\-1\end{pmatrix} = \begin{pmatrix}-2\\4\\-2\end{pmatrix} \text{ and } A\begin{pmatrix}0\\0\\2\end{pmatrix} = \begin{pmatrix}0\\0\\6\end{pmatrix}.$$

Let $Q = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix}$. Then the trace of the matrix AQ is _____.

May 3, 2016

- 2. Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map such that $\{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$ is the kernel of T. If 1 is an eigenvalue of T, then the rank of the linear transformation $T I_4$ is _____.
- 3. Let A be a 3×3 real singular matrix such that Av = v for a nonzero vector $v \in \mathbb{R}^3$. If $\frac{2}{5}$ is an eigenvalue of A and $\alpha A^3 7A^2 + 2A = 0$, then the value of α is ______.
- 4. Let S be the set of all 2×2 matrices with entries in the set $\{0,1\}$ such that the determinant is nonzero. Then the number of the elements in S is _____.
- 5. The radius of convergence of the power series $\sum_{n=1}^{\infty} (\log n)^2 z^n$ is _____.
- 6. Let $\gamma: [0,1] \to \mathbb{C}$ be the path defined by

$$\gamma(t) := \begin{cases} 1+4t & \text{if } 0 \le t \le \frac{1}{4} \\ 2+i2(4t-1) & \text{if } \frac{1}{4} \le t \le \frac{1}{2} \\ \frac{3}{2}+2i+\frac{1}{2}e^{i\pi(2t-1)} & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

If $f(z) = e^z$ for all $z \in \mathbb{C}$, then the value of the path integral $\int_{\gamma} f$ is _____.

- 7. The number of elements of order 5 in the symmetric group S_7 is _____.
- 8. If y is a continuous function on \mathbb{R} such that

$$y(t) + 2 \int_0^t y(t-\tau) e^{2\tau} d\tau = \cosh(2t),$$

then y(t) is _____.

9. Consider a quadrature formula for f in the interval [-1, 1]

$$\int_{-1}^{1} f(x)dx \approx \omega_0 f(-\alpha) + \omega_1 f(0) + \omega_2 f(\alpha)$$

where α and $\omega_i, i = 0, 1, 2$ are suitable positive constants. If this formula is exact whenever f is an arbitrary polynomial of degree at most 5, then $5\alpha^2$ is ______. (Hint: Legendre polynomial of degree n is $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$)

- 10. If the Newton-Raphson method is used on the function $f(x) = x^3 + 1$ starting with $x_0 = 1$, then the iterate x_2 is _____.
- 11. Suppose that the fixed point iteration method

$$x_{i+1} = \frac{x_i(x_i^2 + 12)}{3x_i^2 + 4}, \qquad i = 0, 1, 2, \cdots$$

converges to some $\alpha > 0$ for a suitable x_0 . Then α is _____ and the order of the convergence is _____.

12. Let y(x) be the solution of the ordinary differential equation

$$y'' - y = 1$$

that remains bounded as $x \to \infty$ and passes through the origin. Then y(x) is _____

13. Let $\Omega = \{(x, y) : (x - 1)^2 + (y - 1)^2 < 4\}$ and $\partial\Omega$ be its boundary. Let u be the solution of the Dirichlet problem

$$\nabla^2 u = 0 \quad \text{in } \Omega$$
$$u = x \quad \text{in } \partial\Omega.$$
If $M = \max_{(x,y)\in\Omega\cup\partial\Omega} u(x,y)$, then $M + u(1,1)$ is _____

14. Let L > 0 and u(x, t) be the solution of the heat equation

$$u_t = u_{xx}, \qquad 0 < x < L, \ t > 0,$$

 $u(x,0) = T_1 + \sin\left(\frac{\pi x}{2L}\right)(T_2 - T_1), \quad 0 \le x \le L,$

and

$$u(0,t) = T_1, \ u(L,t) = T_2, \quad t \ge 0,$$

where T_1 and T_2 are constants. Then $\lim_{t\to\infty} u(x,t)$ is _____.

15. Consider the boundary value problem

$$(xy')' + \lambda \frac{y}{x} = 0, \quad y(1) = y'(e) = 0, \qquad \lambda > 0.$$

The lowest value of λ for which the boundary value problem admits a nontrivial solution is _____.

2 Questions with one or more correct answers

- 1. Let $f:(0,1] \to \mathbb{R}$ be a function. Which of the following statement(s) is(are) true.
 - (a) If f is continuous, then f is bounded.
 - (b) If f is uniformly continuous, then f is bounded.
 - (c) If f is continuous and (x_n) is a Cauchy sequence in (0, 1], then $(f(x_n))$ is a Cauchy sequence.
 - (d) If f is uniformly continuous and (x_n) is a Cauchy sequence in (0, 1], then $(f(x_n))$ is a Cauchy sequence.
- 2. Let $f, g: [0,1] \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ and } \gcd(p,q) = 1; p,q \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

and

$$g(x) := \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}.$$

Which of the following statement(s) is(are) true?

(a) Both f and $g \circ f$ are Riemann integrable.

- (b) Both f and $g \circ f$ are **not** Riemann integrable.
- (c) f is Riemann integrable but $g \circ f$ is **not** Riemann integrable.
- (d) f is **not** Riemann integrable but $g \circ f$ is Riemann integrable.
- 3. Let $f_n, g_n : (0, 1) \to \mathbb{R}$ be the sequences of functions defined by

$$f_n(x) := x^n$$
 and $g_n(x) := x^n(1 - x^n)$

for $x \in (0,1)$ and $n = 1, 2, \dots$. Then which of the following statement(s) is(are) true?

- (a) Both (f_n) and (g_n) converge uniformly in (0, 1).
- (b) (f_n) converges uniformly in (0, 1) but (g_n) does **not** converge uniformly in (0, 1).
- (c) (g_n) converges uniformly in (0,1) but (f_n) does **not** converge uniformly in (0,1).
- (d) Both (f_n) and (g_n) do **not** converge uniformly in (0, 1)
- 4. Let $\Omega := \{ w \in \mathbb{C} : |w \frac{1}{4}| < \frac{1}{8} \}$ and $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that $f(z) \notin \Omega$ for all z in \mathbb{C} . If f(0) = 1, then which of the following statement(s) is(are) true?
 - (a) f(z) = 1 + z for all z in \mathbb{C} .
 - (b) $f(z) = 1 + z + z^2 + \dots + z^n$ for all z in \mathbb{C} and for some $n \ge 2$.
 - (c) $f(z) = e^z$ for all z in \mathbb{C} .
 - (d) f(z) = 1 for all z in \mathbb{C} .

5. The ring $\mathbb{Z}[X] := \{a_0 + a_1 X + \dots + a_n X^n : a_i \in \mathbb{Z} \text{ for } 0 \le i \le n, n \in \mathbb{N}\}$ is

- (a) an Euclidean domain.
- (b) a PID.
- (c) a UFD but **not** a PID.
- (d) neither a PID nor a UFD
- 6. Consider the usual topologies on \mathbb{R} and \mathbb{R}^2 . Then \mathbb{R} is homeomorphic to
 - (a) $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$ (b) $\{(x,y) \in \mathbb{R}^2 : \frac{x^2}{2} + \frac{y^2}{4} = 1\}.$ (c) $\{(x,y) \in \mathbb{R}^2 : x - y^2 = 1\}.$ (d) $\{(x,y) \in \mathbb{R}^2 : \frac{y^2}{2} - \frac{x^2}{4} = 1\}.$
- 7. Consider $G := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \text{ and } ad bc \neq 0 \right\}$ as a subset of \mathbb{R}^4 with usual topology on \mathbb{R}^4 . Then which of the following statement(s) is(are) true?
 - (a) G is open and dense in \mathbb{R}^4 .
 - (b) G is open but **not** dense in \mathbb{R}^4 .
 - (c) G is **not** open but dense in \mathbb{R}^4 .
 - (d) G is neither open nor dense in \mathbb{R}^4 .

- 8. In $\ell^2 := \{(a_n) : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$ which of the following statement(s) is(are) true?
 - (a) Every bounded sequence in ℓ^2 has a convergent subsequence.
 - (b) ℓ^2 has a proper closed subspace.
 - (c) There exists a nonzero continuous linear functional on ℓ^2 .
 - (d) If (x_n) is a Cauchy sequence in ℓ^2 , then the sequence $(f(x_n))$ is Cauchy for every bounded linear functionals f on ℓ^2 .
- 9. Let X = C[0, 1] be the space of all continuous real valued functions on [0, 1]. On X, we define two norms: For f in X,

$$||f||_{\infty} := \sup\{|f(t)| : t \in [0,1]\}$$
 and $||f||_1 := \int_0^1 |f(t)| dt.$

Let $X_1 := (X, || ||_1)$ and $X_2 := (X, || ||_\infty)$. Let $T : X \to \mathbb{R}$ be the linear map defined by T(f) := f(0). Which of the following statement(s) is(are) true?

- (a) T is bounded on X_1 but **not** on X_2 .
- (b) T is bounded on X_2 but **not** on X_1 .
- (c) T is bounded on X_1 and X_2 .
- (d) T is neither bounded on X_1 nor on X_2 .
- 10. Let f be an arbitrary continuously differentiable function. If the ordinary differential equation

$$(3y2 - x)f(x + y2) + 2y(y2 - 3x)f(x + y2)y' = 0$$

is exact, then which of the following relation between the function f and its derivative f' is true?

- (a) xf'(x) + 3f(x) = 0.
- (b) xf'(x) 3f(x) = 0.
- (c) f'(x) + 3f(x) = 0.
- (d) f'(x) 3f(x) = 0.