\qquad

Grade Table (for checker use only)

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total:	80	

Team Members:
\qquad

- \qquad
\bullet

Write your team name on top of each page.

If you have any queries, contact the invigilator. However, no questions on the validity/ correctness of a question will be entertained.

1. (10 points) Three gods A, B, and C are called, in no particular order, True, False, and Random. True always speaks truly, False always speaks falsely, but whether Random speaks truly or falsely is a completely random matter. Your task is to determine the identities of A, B, and C by asking three yes-no questions; each question must be put to exactly one god. The gods understand English, but will answer all questions in their own language, in which the words for yes and $n o$ are $d a$ and $j a$, in some order. You do not know which word means which. What questions will you ask ?
2. (10 points) The in-circle of triangle $A B C$ touches the sides $B C, C A$ and $A B$ in K, L and M respectively. The line through A and parallel to $L K$ meets $M K$ in P and the line through A and parallel to $M K$ meets $L K$ in Q. Show that the line $P Q$ bisects the sides $A B$ and $A C$ of triangle $A B C$.

Mathemania-2

3. (10 points) Let $a_{1}, a_{2}, \ldots, a_{n}$ be arbitrary real numbers. Show that the following will always hold

$$
\frac{a_{1}}{1+a_{1}^{2}}+\frac{a_{2}}{1+a_{1}^{2}+a_{2}^{2}}+\ldots+\frac{a_{n}}{1+a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}<\sqrt{n}
$$

4. (10 points) We have 2^{m} sheets of paper, with the number 1 written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase these numbers and write the number $a+b$ on both sheets. Prove that after $m 2^{m-1}$ steps, the sum of the numbers on all the sheets is at least 4^{m}.
5. (10 points) We are given a positive integer r and a rectangular board $A B C D$ with dimensions $|A B|=20,|B C|=12$. The rectangle is divided into a grid of 20×12 unit squares. The following moves are permitted on the board: one can move from one square to another only if the distance between the centers of the two squares is \sqrt{r}. The task is to find a sequence of moves leading from the square with A as a vertex to the square with B as a vertex.
(a) Show that the task cannot be done if r is divisible by 2 or 3 .
(b) Prove that the task is possible when $r=73$.
(c) Can the task be done when $r=97$?

Mathemania-2

6. (10 points) Let k be a positive integer and m be an odd number. Prove that there exists a natural number n such that $n^{n}-m$ is divisible by 2^{k}.

Mathemania-2

7. (10 points) A point D is chosen on side $A C$ of triangle $A B C$ with $\angle C<\angle A<90^{\circ}$ in such a way that $B D=B A$. The incircle of triangle $A B C$ is tangent to $A B$ and $A C$ at points K and L, respectively. Let J be the incentre of triange $B C D$. Prove that the line $K L$ bicects line segment $A J$.

Mathemania-2

\qquad
8. (10 points) Let $n>1$ be a given positive integer. Prove that infinitely many terms of the sequence $\left(a_{k}\right)_{k \geq 1}$, defined by

$$
a_{k}=\left\lfloor\frac{n^{k}}{k}\right\rfloor,
$$

are odd.

