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Recap Introduction

Outline of this lecture

This short course on mimetic spectral elements consists of 6 lectures:

Lecture 1: In this lecture we will review some basic concepts from differential geometry

Lecture 2: Generalized Stokes Theorem and geometric integration

Lecture 3: Connection between continuous and discrete quantities. The Reduction
operator and the reconstruction operator.

Lecture 4: The Hodge-? operator. Finite volume, finite element methods and
least-squares methods.

Lecture 5: Application of mimetic schemes to elliptic equations. Poisson and Stokes
problem

Lecture 6: Open research questions. Collaboration.
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Previous lecture

Previous lectures

On Monday we looked at differential form α(k) ∈ Λk (M) and the
exterior derivative d : Λk (M)→ Λk+1(M).

On Tuesday we look at cochains ck ∈ Ck (D) and the coboundary
operator δ : Ck (D)→ Ck+1(D)

Yesterday, we looked at how to pass from a continuous description to a
discrete description and back. There basis functions were introduced.
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Today’s lecture

Today

If everything we discussed sofar is exact, where does the
approximation come from?

It is metric where the approximation takes place.
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Poisson problem

Simple model problem

Poisson equation

Given the Poisson equation in a bounded domain Ω with boundary ∂Ω = ∂ΩD ∪ ∂ΩN
∆ϕ = f in Ω

ϕ = gD on ∂ΩD

∂ϕ/∂n = gN on ∂ΩN

Marc Gerritsma (TUD) Mimetic discretizations Lecture 4 5 / 23



Poisson problem

Simple model problem

Poisson equation – system first order equations

Given the Poisson equation in a bounded domain Ω with boundary ∂Ω = ∂ΩD ∪ ∂ΩN

div q = f in Ω

exact

u = q in Ω

approximation

u = gradϕ in Ω

exact

ϕ = gD on ∂ΩD

exact

u · n = gN on ∂ΩN

exact
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Exact discrete representation vs approximation

Some of the above equations can be represented exactly in a finite dimensional setting, whereas
other equations need to be approximated. The question, therefore, is: which equations can be
represented exactly and where do we need to approximate?
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Poisson problem

Generalized Stokes Theorem
Stokes Theorem: Let Ωk+1 be a k + 1-dimensional manifold and a ∈ Λk then∫

∂Ωk+1

a(k) =

∫
Ωk+1

da(k) ⇔
〈

a(k), ∂Ωk+1

〉
=
〈

da(k),Ωk+1

〉
—————————————————————————————————–

k = 0 :

∫
L

grad φ dl = φ(lend)− φ(lbegin), grad : Hp 7→ HL

k = 1 :

∫
S

curl ξ dS =

∫
∂S

ξ dl, curl : HL 7→ HS

k = 2 :

∫
V

div F dV =

∫
∂V

F dS, div : HS 7→ HV

—————————————————————————————————–

Exact sequence (De Rham complex):

R ↪→ Hp
d−→

grad
HL

d−→
curl

HS
d−→

div
HV → 0
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P L S V
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~

L
~

P
~
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Geometry

Relation between geometric objects

Boundary operator

The most important operator in mimetic methods is the boundary operator ∂

∂ : k -dim −→ (k − 1)-dim

∂
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Orientation

Orientation and type of orientation

Orientation and sense of orientation

Every geometric object can be oriented in two ways. For instance, in a surface we define a sense
of rotation, either clockwise or counter clockwise

Furthermore, we distinguish between inner-orientation and outer-orientation
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Orientation

Orientation and type of orientation
∂ and ?∂?

Let ? denote the operator which switches between inner- and outer-orientation

∂

∂

*

*

Then we have the operations:

∂ : k -dim −→ (k − 1)-dim ? ∂? : k -dim −→ (k + 1)-dim

Marc Gerritsma (TUD) Mimetic discretizations Lecture 4 10 / 23



Orientation

Orientation and type of orientation
∂ and ?∂?

Let ? denote the operator which switches between inner- and outer-orientation

∂

∂

*

*

Then we have the operations:

∂ : k -dim −→ (k − 1)-dim ? ∂? : k -dim −→ (k + 1)-dim

Marc Gerritsma (TUD) Mimetic discretizations Lecture 4 10 / 23



Orientation

Oriented dual cell complexes

Double boundary complex

In 3D we have points, curves, surfaces and volumes

Inner Orientation

Outer Orientation

∂ ∂ ∂

*

∂ ∂ ∂

* * * * *
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The ugly stepmother

The ’Hodge-?’ operator

The ’Hodge-?’ operator

Remember that ? was the operator which switches between inner- and outer orientation. We can
also write down a formal adjoint of this operation

〈
?α(k),Ωn−k

〉
:=
〈
α(n−k),Ωn−k

〉
The ? operator applied to k -dimensional geometric objects turns them into (n − k)-dimensional
geometric objects with the other type of orientation.
The ? operator applied to k -cochains turns them into (n−k)-cochains acting on geometric objects
of the other orientation.

The ? operator is metric-dependent and can therefore not be described
in purely topological terms
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The ugly stepmother

The codifferential

Just as we did for the exterior derivative, we can find the associated
operator for differential forms.〈

α(k), ?∂ ? Ωk−1

〉
=
〈
?d ?α(k),Ωk−1

〉
?d? : Λk (M)→ Λk−1(M)

The operator ?d? is called the codifferential operator
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The ugly stepmother

Some remarks

The ? for switching between geometries does not exist. It is just an
intuitive way of explaining the switch from inner to outer. See
Jenny Harrison. The star-operator for differential forms is very well
defined and is called the Hodge-? operator, [Frankel]

We know that the exterior derivative d models the grad, curl and
div. With which operators can we associate ?d???
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Hodge-? operator

The Hodge operator

The Hodge operator, ?, is a invertible, linear map from Λk (M) to
Λn−k (M):

? : Λk (M)→ Λn−k (M)

The Hodge also converts an inner-oriented differential form to an
outer-oriented form and vice versa.

The Hodge-? applied twice to a k -form gives

? ?α(k) = (−1)k(n−k)α(k)
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Hodge-? operator

A k -form is a sum of terms of the form a(x1, . . . , xn) dx i1 ∧ . . . ∧ dx ik ,
where i1 < . . . < ik . The i1 < . . . < ik form a subset of {1,2, . . . ,n}.
The complementary set is j1 < . . . < jn−k , so
{i1, . . . , ik}

⋃
{j1, . . . , jn−k} = {1,2, . . . ,n}. If {j1, . . . , jn−k , i1, . . . , ik} is

an even permutation of {1,2, . . . ,n} we take sign= + and when it is an
odd permutation of {1,2, . . . ,n}, then we take sign= −. Then

?a(x1, . . . , xn) dx i1 ∧ . . . ∧ dx ik = sign · a(x1, . . . , xn) dx j1 ∧ . . . ∧ dx jn−k .

Example
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Example
dy − dx
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Hodge-? operator

A k -form is a sum of terms of the form a(x1, . . . , xn) dx i1 ∧ . . . ∧ dx ik ,
where i1 < . . . < ik . The i1 < . . . < ik form a subset of {1,2, . . . ,n}.
The complementary set is j1 < . . . < jn−k , so
{i1, . . . , ik}

⋃
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?a(x1, . . . , xn) dx i1 ∧ . . . ∧ dx ik = sign · a(x1, . . . , xn) dx j1 ∧ . . . ∧ dx jn−k .

Example
?dx = dy ? dy = −dx
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Hodge-? operator
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Example So if

u(1) = u dx + v dy =⇒ ?u(1) = u dy − v dx

du(1) =

(
∂v
∂x
− ∂u
∂y

)
dxdy d ? u(1) =

(
∂u
∂x

+
∂v
∂y

)
dxdy
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Hodge-? operator

The ugly stepmother

d? = ?d?

Recall that
?∂? : Ck −→ Ck+1

Inner Orientation

Outer Orientation

∂ ∂ ∂

*

∂ ∂ ∂

* * * * *

So the formal adjoint of ?∂? would be

〈
d?α(k),Ωk−1

〉
:=
〈
?d ?α(k),Ωk−1

〉
=
〈
α(k), ?∂ ? Ωk−1

〉
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Hodge-? operator

The ugly stepmother
d? and grad, curl and div

d? also represents the grad, curl and div

d? : Λk (M) −→ Λk−1(M)

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

Note that in contrast to d, d? is a metric-dependent version of grad, curl and div and can therefore
NOT be the same as the topological grad, curl and div. We will make this difference explicit by
grad∗, curl∗ and div∗.

Marc Gerritsma (TUD) Mimetic discretizations Lecture 4 17 / 23



Hodge-? operator

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The scalar Laplace operator acting on outward oriented points is given by

−div∗ gradφ
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Hodge-? operator

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented lines is given by

[−grad div∗ + curl∗ curl] ~A

Marc Gerritsma (TUD) Mimetic discretizations Lecture 4 18 / 23



Hodge-? operator

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented surfaces is given by

[curl curl∗ − grad∗ div] ~F
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Hodge-? operator

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by

−div grad∗ρ
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Hodge-? operator

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

On contractible domains the geometric structure given above is called the double DeRham com-
plex
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Staggered Finite Volume

Staggered Finite Volume methods

Dual grid method

In staggered finite volume methods, people actually work on two dual grids and explicitly construct
the Hodge, i.e. interpolate the solution from one grid to the other (approximation)

Di

Db

Di
~

Db
~

*

*

Marc Gerritsma (TUD) Mimetic discretizations Lecture 4 19 / 23



Staggered Finite Volume

Staggered Finite Volume methods
Dual grid method

Usually the do not show two separate grids, but put them on top of each other
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Staggered Finite Volume

Staggered Finite Volume methods
Dual grid method

Note that on 1 of the two grids the boundary is ‘missing’. In the finite volume community, they
introduce ghost points to complete the grid. In the ghost points boundary conditions can be
prescribed.

Di

Db

Di
~

Db
~

*

*
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Inner product for differential forms

Inner product for differential forms
Inner-product for differential forms

Let α(k),β(k) ∈ Λk (M) then
α(k) ∧ ?β(k) ∈ Λn(M)

The inner-product
(
α(k),β(k)

)
is defined as

(
α(k),β(k)

)
:=

∫
M

α(k) ∧ ?β(k)

Integration by parts

Let α(k−1) ∈ Λk (M) and β(k) ∈ Λk (M) then [Lecture 1, slide 23]

d(α(k−1) ∧ ?β(k)) = (dα(k−1)) ∧ ?β(k) + (−1)k−1α(k−1) ∧ (d ? β(k))

= (dα(k−1)) ∧ ?β(k) + (−1)k−1+(k+1)(n−k−1)α(k−1) ∧ ?(?d ? β(k))

= (dα(k−1)) ∧ ?β(k) −α(k−1) ∧ ?(d?β(k))∫
∂M

(α(k−1) ∧ ?β(k)) = (dα(k−1),β(k))− (α(k−1), d?β(k))
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Inner product for differential forms
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Inner product for differential forms

How to avoid grad∗, curl∗ and div∗

Integration by parts

Finite element methods remove the metric-dependent vector operations through integration by
parts

(dak , bk+1) = dak ∧ ?bk+1 = (−1)k+1ak ∧ d ? bk+1 =

ak ∧ ?d∗bk+1 = (ak , d∗bk+1)

Vector operations

In conventional vector operations this reads (without boundary)

(gradφ,~b) = (φ,−div∗~b) , (curl~a, ~b) = (~a, curl∗~b) , (div~a, φ) = (~a,−grad∗φ)
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Inner product for differential forms

How to avoid grad∗, curl∗ and div∗

Boundary integral

Di

Db

Di
~

Db
~

*

*
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Inner product for differential forms

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The scalar Laplace operator acting on outward oriented points is given by

−div∗ gradφ = f
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Inner product for differential forms

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The scalar Laplace operator acting on outward oriented points is given by

(−div∗ gradφ, ψ) = (f , ψ)
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Inner product for differential forms

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The scalar Laplace operator acting on outward oriented points is given by

(gradφ, divψ) + b.i. = (f , ψ)
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Inner product for differential forms

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by

div grad∗ρ = f
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Inner product for differential forms

Laplace-Hodge operator
Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by

~q = grad∗ρ

div~q = f
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Inner product for differential forms

Laplace-Hodge operator
Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by(
~q, ~p

)
−
(
grad∗ρ,~p

)
= 0

(
div~q,w

)
= (f ,w)
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Inner product for differential forms

Laplace-Hodge operator
Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The vector Laplace operator acting on outward oriented volumes is given by(
~q, ~p

)
+
(
ρ, div~p

)
+ b.i. = 0

(
div~q,w

)
= (f ,w)
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Inner product for differential forms

Laplace-Hodge operator

Laplace-Hodge operator

Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

The weak formulation (direct or mixed) is determined by the geometry which in turn is determined
by the physics!
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Inner product for differential forms

Tomorrow

Tomorrow we are going to look at some applications of this approach.
How do you program this method and what are the advantages in
terms of conservation and accuracy.
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