Lectures IIT Kanpur, India Lecture 3: Between continuous and discrete

Basis functions

Marc Gerritsma
M.I.Gerritsma@TUDelft.nl
Department of Aerospace Engineering
Delft University of Technology

25 March 2015

THUDelft

Outline of this lecture

This short course on mimetic spectral elements consists of 6 lectures:
Lecture 1: In this lecture we will review some basic concepts from differential geometry
Lecture 2: Generalized Stokes Theorem and geometric integration
Lecture 3: Connection between continuous and discrete quantities. The Reduction
operator and the reconstruction operator.
Lecture 4: The Hodge-ぇ operator. Finite volume, finite element methods and
least-squares methods.
Lecture 5: Apnlication of mimetic schemes to elliptic equations. Poisson and Stokes
problem
Lecture 6: Open research questions. Collaboration.

Outline of this lecture

This short course on mimetic spectral elements consists of 6 lectures:
Lecture 1: In this lecture we will review some basic concepts from differential geometry
Lecture 2: Generalized Stokes Theorem and geometric integration
Lecture 3: Connection between continuous and discrete quantities. The Reduction
operator and the reconstruction operator.
Lecture 4: The Hodge-ぇ operator. Finite volume, finite element methods and
least-squares methods.
Lecture 5: Application of mimetic schemes to elliptic equations. Poisson and Stokes
problem
Lecture 6: Open research questions. Collaboration.

Outline of this lecture

This short course on mimetic spectral elements consists of 6 lectures:
Lecture 1: In this lecture we will review some basic concepts from differential geometry
Lecture 2: Generalized Stokes Theorem and geometric integration
Lecture 3: Connection between continuous and discrete quantities. The Reduction operator and the reconstruction operator.
Lecture 4: The Hodge-ぇ operator. Finite volume, finite element methods and
least-squares methods.
Lecture 5: Application of mimetic schemes to elliptic equations. Poisson and Stokes
problem
Lecture 6: Open research questions. Collaboration.

Outline of this lecture

This short course on mimetic spectral elements consists of 6 lectures:
Lecture 1: In this lecture we will review some basic concepts from differential geometry
Lecture 2: Generalized Stokes Theorem and geometric integration
Lecture 3: Connection between continuous and discrete quantities. The Reduction operator and the reconstruction operator.
Lecture 4: The Hodge-ぇ operator. Finite volume, finite element methods and least-squares methods.

Lecture 5: Application of mimetic schemes to elliptic equations. Poisson and Stokes
problem
Lecture 6: Open research questions. Collaboration.

Outline of this lecture

This short course on mimetic spectral elements consists of 6 lectures:
Lecture 1: In this lecture we will review some basic concepts from differential geometry
Lecture 2: Generalized Stokes Theorem and geometric integration
Lecture 3: Connection between continuous and discrete quantities. The Reduction operator and the reconstruction operator.
Lecture 4: The Hodge-ぇ operator. Finite volume, finite element methods and least-squares methods.
Lecture 5: Application of mimetic schemes to elliptic equations. Poisson and Stokes problem
Lecture 6: Open research questions. Collaboration.

Outline of this lecture

This short course on mimetic spectral elements consists of 6 lectures:
Lecture 1: In this lecture we will review some basic concepts from differential geometry
Lecture 2: Generalized Stokes Theorem and geometric integration
Lecture 3: Connection between continuous and discrete quantities. The Reduction operator and the reconstruction operator.
Lecture 4: The Hodge-ぇ operator. Finite volume, finite element methods and least-squares methods.
Lecture 5: Application of mimetic schemes to elliptic equations. Poisson and Stokes problem
Lecture 6: Open research questions. Collaboration.

Previous lectures

On Monday we looked at differential form $\alpha^{(k)} \in \Lambda^{k}(\mathcal{M})$ and the exterior derivative $\mathrm{d}: \Lambda^{k}(\mathcal{M}) \rightarrow \Lambda^{k+1}(\mathcal{M})$.

Yesterday we look at cochains $\mathbf{c}^{k} \in C^{k}(D)$ and the coboundary operator $\delta: C^{k}(D) \rightarrow C^{k+1}(D)$

Today

Today we are going to look at two operators which allow us two switch between a continuous representation and the discrete representation:

The Reduction map, \mathcal{R}

The reconstruction map, \mathcal{I}

THUDelft

Today

Today we are going to look at two operators which allow us two switch between a continuous representation and the discrete representation:

The Reduction map, \mathcal{R}

$$
\mathcal{R}: \Lambda^{k}(\mathcal{M}) \rightarrow C^{k}(D)
$$

The reconstruction map, \mathcal{I}

Today

Today we are going to look at two operators which allow us two switch between a continuous representation and the discrete representation:

The Reduction map, \mathcal{R}

$$
\mathcal{R}: \Lambda^{k}(\mathcal{M}) \rightarrow C^{k}(D)
$$

The reconstruction map, \mathcal{I}

$$
\mathcal{I}: C^{k}(D) \rightarrow \Lambda^{k}(\mathcal{M})
$$

Why do we need these operations?

Sofar, everything that was discussed is purely topological, but at some point - we will discuss this tomorrow - metric needs to be included.

> Metric cannot be described in the cochain-framework, so whenever we encounter metric concepts (constitutive equations), we apply \mathcal{I}, perform the metric operations at the continuous level and then we apply \mathcal{R} to return to the discrete setting.

TUDelft

Why do we need these operations?

Sofar, everything that was discussed is purely topological, but at some point - we will discuss this tomorrow - metric needs to be included.

Metric cannot be described in the cochain-framework, so whenever we encounter metric concepts (constitutive equations), we apply \mathcal{I}, perform the metric operations at the continuous level and then we apply \mathcal{R} to return to the discrete setting.

Reduction I

Let \mathcal{M} be a smooth manifold and D a cell-complex which covers the manifold.

THO

Reduction I

Let \mathcal{M} be a smooth manifold and D a cell-complex which covers the manifold.

Let $\alpha^{(k)} \in \Lambda^{k}(\mathcal{M})$ and $\sigma_{(k), j} \in C_{k}(D)$, then define $\mathcal{R} \alpha^{(k)} \in C^{k}(D)$ by

Reduction I

Let \mathcal{M} be a smooth manifold and D a cell-complex which covers the manifold.

Let $\boldsymbol{\alpha}^{(k)} \in \Lambda^{k}(\mathcal{M})$ and $\sigma_{(k), j} \in C_{k}(D)$, then define $\mathcal{R} \alpha^{(k)} \in C^{k}(D)$ by

$$
\left\langle\mathcal{R} \boldsymbol{\alpha}^{(k)}, \sigma_{(k), j}\right\rangle:=\int_{\sigma_{(k), j}} \boldsymbol{\alpha}^{(k)} \quad \forall \sigma_{(k), j} \in C_{k}(D)
$$

Reduction II

Let $\mathbf{c}_{(k)} \in C_{k}(D)$ be a k-chain given by

$$
\mathbf{c}_{(k)}=\sum_{i=1}^{\# k} w^{i} \sigma_{(k), i}
$$

then

$$
\begin{aligned}
\left\langle\mathcal{R} \boldsymbol{\alpha}^{(k)}, \mathbf{c}_{(k)}\right\rangle & =\sum_{i=1}^{\# k} w^{i}\left\langle\mathcal{R} \boldsymbol{\alpha}^{(k)}, \sigma_{(k), i}\right\rangle \\
& =\sum_{i=1}^{\# k} w^{i} \int_{\sigma_{(k), i}} \boldsymbol{\alpha}^{(k)} \\
& =\int_{\mathbf{c}_{(k)}} \boldsymbol{\alpha}^{(k)}
\end{aligned}
$$

Reduction III

So the reduction map

$$
\mathcal{R}: \Lambda^{k}(\mathcal{M}) \rightarrow C^{k}(D)
$$

is given by

$$
\mathcal{R} \boldsymbol{\alpha}^{(k)}:=\sum_{i=1}^{\# k}\left\langle\mathcal{R} \boldsymbol{\alpha}^{(k)}, \sigma_{(k), i}\right\rangle \sigma^{(k), i}
$$

The reduction map \mathcal{R} is also called the deRham map

Reduction III

So the reduction map

$$
\mathcal{R}: \Lambda^{k}(\mathcal{M}) \rightarrow C^{k}(D)
$$

is given by

$$
\mathcal{R} \boldsymbol{\alpha}^{(k)}:=\sum_{i=1}^{\# k}\left\langle\mathcal{R} \boldsymbol{\alpha}^{(k)}, \sigma_{(k), i}\right\rangle \sigma^{(k), i}
$$

The reduction map \mathcal{R} is also called the deRham map

Commutation reduction and differentiation

The reduction map commutes with continuous and discrete derivatives

$$
\mathcal{R} \mathrm{d}=\delta \mathcal{R} \quad \text { on } \Lambda^{k}(\mathcal{M})
$$

Commutation reduction and differentiation

The reduction map commutes with continuous and discrete derivatives

$$
\begin{array}{cc}
\mathcal{R} d=\delta \mathcal{R} \quad \text { on } \Lambda^{k}(\mathcal{M}) \\
\Lambda^{k} \xrightarrow{\text { d }} \Lambda^{k+1} \\
\downarrow^{k} & \downarrow^{2} \\
C^{k} \xrightarrow{\delta} C^{k+1}
\end{array}
$$

Proof

For all k-chains $\mathbf{c}_{(k+1)}$ and all $\boldsymbol{\alpha}^{(k)}$, we have

$$
\begin{aligned}
\left\langle\mathcal{R} \mathrm{d} \boldsymbol{\alpha}^{(k)}, \mathbf{c}_{(k+1)}\right\rangle & =\int_{\mathbf{c}_{(k+1)}} \mathrm{d} \boldsymbol{\alpha}^{(k)}=\int_{\partial \mathbf{c}_{(k+1)}} \boldsymbol{\alpha}^{(k)} \\
& =\left\langle\mathcal{R} \boldsymbol{\alpha}^{(k)}, \partial \mathbf{c}_{(k+1)}\right\rangle=\left\langle\delta \mathcal{R} \boldsymbol{\alpha}^{(k)}, \mathbf{c}_{(k+1)}\right\rangle
\end{aligned}
$$

This is true for all $\mathbf{c}_{(k+1)}$ and all $\alpha^{(k)}$ and therefore $\mathcal{R} \mathrm{d}=\delta \mathcal{R}$.

Proof

For all k-chains $\mathbf{c}_{(k+1)}$ and all $\boldsymbol{\alpha}^{(k)}$, we have

$$
\begin{aligned}
\left\langle\mathcal{R} \mathrm{d} \boldsymbol{\alpha}^{(k)}, \mathbf{c}_{(k+1)}\right\rangle & =\int_{\mathbf{c}_{(k+1)}} \mathrm{d} \boldsymbol{\alpha}^{(k)}=\int_{\partial \mathbf{c}_{(k+1)}} \boldsymbol{\alpha}^{(k)} \\
& =\left\langle\mathcal{R} \boldsymbol{\alpha}^{(k)}, \partial \mathbf{c}_{(k+1)}\right\rangle=\left\langle\delta \mathcal{R} \boldsymbol{\alpha}^{(k)}, \mathbf{c}_{(k+1)}\right\rangle
\end{aligned}
$$

This is true for all $\mathbf{c}_{(k+1)}$ and all $\boldsymbol{\alpha}^{(k)}$ and therefore $\mathcal{R} \mathrm{d}=\delta \mathcal{R}$.

Reconstruction I

The reduction, \mathcal{R}, is generic. The reconstruction, \mathcal{I} offers much more freedom. But there are a few basic requirements:

Reconstruction I

The reduction, \mathcal{R}, is generic. The reconstruction, \mathcal{I} offers much more freedom. But there are a few basic requirements:

$$
\mathcal{R I}=\mathbb{I} \quad \text { on } C_{k}(D)
$$

Reconstruction I

The reduction, \mathcal{R}, is generic. The reconstruction, \mathcal{I} offers much more freedom. But there are a few basic requirements:

$$
\begin{gathered}
\mathcal{R I}=\mathbb{I} \quad \text { on } C_{k}(D) \\
\mathcal{I R}=\mathbb{I}+O\left(h^{p}\right) \quad \text { on } \wedge^{k}(\mathcal{M})
\end{gathered}
$$

Reconstruction I

The reduction, \mathcal{R}, is generic. The reconstruction, \mathcal{I} offers much more freedom. But there are a few basic requirements:

$$
\begin{gathered}
\mathcal{R} \mathcal{I}=\mathbb{I} \quad \text { on } C_{k}(D) \\
\mathcal{I} \mathcal{R}=\mathbb{I}+O\left(h^{p}\right) \quad \text { on } \Lambda^{k}(\mathcal{M}) \\
\mathrm{d} \mathcal{I}=\mathcal{I} \delta \quad \text { on } C_{k}(D)
\end{gathered}
$$

Reconstruction I

The reduction, \mathcal{R}, is generic. The reconstruction, \mathcal{I} offers much more freedom. But there are a few basic requirements:

$$
\begin{gathered}
\mathcal{R I}=\mathbb{I} \quad \text { on } C_{k}(D) \\
\mathcal{I} \mathcal{R}=\mathbb{I}+O\left(h^{p}\right) \quad \text { on } \Lambda^{k}(\mathcal{M}) \\
\Lambda^{k} \xrightarrow{\text { d }} \Lambda^{k+1} \\
\uparrow_{I} \\
C^{k} \xrightarrow{\delta} C^{k+1}
\end{gathered}
$$

Reconstruction II

Note that

$$
\mathcal{I R}: \Lambda^{k}(\mathcal{M}) \rightarrow \Lambda^{k}(\mathcal{M})
$$

We will call $\pi_{h}:=\mathcal{I} \mathcal{R}$ the projection or discretization

Note that $\pi_{h} \circ \pi_{h}=\pi_{h}$, because

$$
\pi_{h} \circ \pi_{h}=\mathcal{I} \underbrace{\mathcal{R} I}_{\mathbb{I}} R=\mathcal{I R}=\pi_{h}
$$

Note that the commutation relations with reduction, reconstruction and derivatives, give us

$$
\mathrm{d} \pi_{h}=\mathrm{d} \mathcal{I} \mathcal{R}=\mathcal{I} \delta \mathcal{R}=\mathcal{I} \mathcal{R} \mathrm{d}=\pi_{h} \mathrm{~d}
$$

TUUDelft

Reconstruction II

Note that

$$
\mathcal{I R}: \Lambda^{k}(\mathcal{M}) \rightarrow \Lambda^{k}(\mathcal{M})
$$

We will call $\pi_{h}:=\mathcal{I} \mathcal{R}$ the projection or discretization

Note that $\pi_{h} \circ \pi_{h}=\pi_{h}$, because

Note that the commutation relations with reduction, reconstruction and derivatives, give us

TUUDelft

Reconstruction II

Note that

$$
\mathcal{I R}: \Lambda^{k}(\mathcal{M}) \rightarrow \Lambda^{k}(\mathcal{M})
$$

We will call $\pi_{h}:=\mathcal{I} \mathcal{R}$ the projection or discretization

Note that $\pi_{h} \circ \pi_{h}=\pi_{h}$, because

$$
\pi_{h} \circ \pi_{h}=\mathcal{I} \underbrace{\mathcal{R} \mathcal{I}}_{\mathbb{I}} \mathcal{R}=\mathcal{I} \mathcal{R}=\pi_{h}
$$

Note that the commutation relations with reduction, reconstruction and derivatives, give us

TUUDelft

Reconstruction II

Note that

$$
\mathcal{I R}: \Lambda^{k}(\mathcal{M}) \rightarrow \Lambda^{k}(\mathcal{M})
$$

We will call $\pi_{h}:=\mathcal{I R}$ the projection or discretization
Note that $\pi_{h} \circ \pi_{h}=\pi_{h}$, because

$$
\pi_{h} \circ \pi_{h}=\mathcal{I} \underbrace{\mathcal{R} \mathcal{I}}_{\mathbb{I}} \mathcal{R}=\mathcal{I R}=\pi_{h}
$$

Note that the commutation relations with reduction, reconstruction and derivatives, give us

$$
\mathrm{d} \pi_{h}=\mathrm{d} \mathcal{I} \mathcal{R}=\mathcal{I} \delta \mathcal{R}=\mathcal{I} \mathcal{R} \mathrm{d}=\pi_{h} \mathrm{~d}
$$

The discretization commutes with differentiation!

Reconstruction III

In order to satisfy these properties for k a different reconstruction is required. So, 0-cochains are reconstructed differently from n-cochains.

When we use tensor products, multi-dimensional reconstructions are a tensor product of one-dimensional reconstructions

Therefore, we will consider the 1D case first

Reconstruction III

In order to satisfy these properties for k a different reconstruction is required. So, 0-cochains are reconstructed differently from n-cochains.

When we use tensor products, multi-dimensional reconstructions are a tensor product of one-dimensional reconstructions

Therefore, we will consider the 1D case first

THUDelft

Reconstruction III

In order to satisfy these properties for k a different reconstruction is required. So, 0-cochains are reconstructed differently from n-cochains.

When we use tensor products, multi-dimensional reconstructions are a tensor product of one-dimensional reconstructions

Therefore, we will consider the 1D case first

1D 0-forms from 0-cochains

Consider the interval $[-1,1]$ and a partitioning $-1=\xi_{0}<\ldots \xi_{i-1}<\xi_{i}<\xi_{i+1}<\ldots<\xi_{N}=1$

THUDelft

1D 0-forms from 0-cochains

Consider the interval $[-1,1]$ and a partitioning $-1=\xi_{0}<\ldots \xi_{i-1}<\xi_{i}<\xi_{i+1}<\ldots<\xi_{N}=1$

THODelft

1D 0-forms from 0-cochains

Consider the interval $[-1,1]$ and a partitioning $-1=\xi_{0}<\ldots \xi_{i-1}<\xi_{i}<\xi_{i+1}<\ldots<\xi_{N}=1$

THU T Ift

1D 0-forms from 0-cochains

Consider the interval $[-1,1]$ and a partitioning $-1=\xi_{0}<\ldots \xi_{i-1}<\xi_{i}<\xi_{i+1}<\ldots<\xi_{N}=1$

THU T Ift

$\mathcal{I R}=\mathbb{I}+O\left(h^{D}\right)$

THUDelft

Nodal reconstruction

Consider the interval $[-1,1]$ and a partitioning
$-1=\xi_{0}<\ldots \xi_{i-1}<\xi_{i}<\xi_{i+1}<\ldots<\xi_{N}=1$
A nodal reconstruction consists of a set of basis functions $/^{(0), i}(\xi)$ with the property

$$
f^{(0), i}\left(\xi_{j}\right)= \begin{cases}1 & \text { when } i=j \\ 0 & \text { elsewhere }\end{cases}
$$

With such basis functions we can reconstruct the 0-form from the 0 -cochain

$$
f^{h}(\xi):=\operatorname{IR} f(\xi)=\sum_{i=0}^{N} f_{i}(0), i(\xi)
$$

1-form reconstruction I

If we know the 0-cochain f_{i}, we can use the coboundary to construct the 1-cochain $\delta f_{i}=\left(f_{i}-f_{i-1}\right)$.

The action of the coboundary operator in pictures

TUDEeft

1-form reconstruction I

If we know the 0-cochain f_{i}, we can use the coboundary to construct the 1-cochain $\delta f_{i}=\left(f_{i}-f_{i-1}\right)$.

1-form reconstruction II

$$
\begin{aligned}
\mathrm{d} f^{h}(\xi)=\mathrm{d} \mathcal{I} \mathcal{R} f(\xi)= & \mathrm{d} \sum_{i=0}^{N} f_{i} I^{\prime(0), i}(\xi) \\
= & \sum_{i=0}^{N} f_{i} \mathrm{~d} /^{(0), i}(\xi) \\
= & f_{0} \mathrm{~d} /^{(0), 0}(\xi)+f_{1} \mathrm{~d} /^{(0), 1}(\xi)+f_{2} \mathrm{~d} /^{(0), 2}(\xi)+\ldots+f_{N} \mathrm{~d} /^{(0), N}(\xi) \\
= & \left(f_{1}-f_{0}\right)\left[-\mathrm{d} /^{(0), 0}(\xi)\right]+\left(f_{2}-f_{1}\right)\left[-\mathrm{d} /^{(0), 0}(\xi)-\mathrm{d} /^{(0), 1}(\xi)\right]+\ldots \\
& +\left(f_{N}-f_{N-1}\right)\left[-\mathrm{d} /^{(0), 0}(\xi)-\ldots-\mathrm{d} /^{(0), N-1}(\xi)\right] \\
= & \left(f_{1}-f_{0}\right) \prime^{(1), 1}(\xi)+\left(f_{2}-f_{1}\right) /^{(1), 2}(\xi)+\ldots+\left(f_{N}-f_{N-1}\right) I^{(1), N}(\xi) \\
= & \sum_{i=1}^{N}\left(f_{i}-f_{i-1}\right) \prime^{(1), i}(\xi)=\mathcal{I} \delta \mathcal{R} f(\xi)
\end{aligned}
$$

with

$$
I^{(1), i}(\xi)=-\sum_{k=0}^{i-1} \mathrm{~d} /^{(0), k}(\xi)
$$

This holds for all $\mathcal{R} f$ and therefore we have shown

$$
\mathrm{d} \mathcal{I}=\mathcal{I} \delta
$$

1-form reconstruction III

For the nodal basis functions we had the property

$$
I^{(0), i}\left(\xi_{j}\right)= \begin{cases}1 & \text { when } i=j \\ 0 & \text { elsewhere }\end{cases}
$$

The basis functions which reconstruct the 1-forms satisfy

$$
\int_{\xi_{j-1}}^{\xi_{j}} I^{(1), i}(\xi)= \begin{cases}1 & \text { when } i=j \\ 0 & \text { elsewhere }\end{cases}
$$

THUDelft

1-form reconstruction III

Polynomial nodal Lagrange basis functions, which are 1 in one point and zero at all other points TUDelft

1-form reconstruction III

Polynomial 1-form reconstruction basis functions, which, when integrated between two consecutive points gives 0 except for one interval where it yields 1 (see the light gray shaded area for the red basis function)

1-form reconstruction IV

Let $\mathbf{c}^{(1)}$ be a 1-cochain in 1 D

$$
\mathbf{c}^{(1)}=\sum_{i=1}^{N} \alpha_{i} \sigma^{(1), i}
$$

then its reconstruction is given by

$$
\alpha_{h}^{(1)}(\xi)=\sum_{i=1}^{N} \alpha_{i} l^{(1), i}
$$

Note that

$$
\int_{\xi_{j-1}}^{\xi_{j}} \alpha_{h}^{(1)}(\xi)=\sum_{i=1}^{N} \alpha_{i} \int_{\xi_{j-1}}^{\xi_{j}} I^{(1), i}=\alpha_{j}
$$

Integration along a line segment (reduction of a 1 -form) retrieves the 1 -cochain, i.e $\mathcal{R I}=\mathbb{I}$.

1-form reconstruction V

THUDelft

Tensor product

In the 2D case, we use tensor products to represent differential forms

THU T Ift

Tensor product

In the 2D case, we use tensor products to represent differential forms

$$
0-\text { form } \quad: \quad \varphi(\xi, \eta)=\sum_{i=0}^{N} \sum_{j=0}^{N} \varphi_{i, j} /^{(0), i}(\xi) /^{(0), j}(\eta)
$$

Tensor product

In the 2D case, we use tensor products to represent differential forms

$$
\begin{gathered}
0-\text { form }: \quad \varphi(\xi, \eta)=\sum_{i=0}^{N} \sum_{j=0}^{N} \varphi_{i, j} I^{(0), i}(\xi) I^{(0), j}(\eta) \\
1-\text { form }: \quad \mathbf{v}(\xi, \eta)=\sum_{i=1}^{N} \sum_{j=0}^{N} u_{i, j} j^{(1), i}(\xi) I^{(0), j}(\eta)+\sum_{i=0}^{N} \sum_{j=1}^{N} v_{i, j} j^{(0), i}(\xi) I^{(1), j}(\eta)
\end{gathered}
$$

Tensor product

In the 2D case, we use tensor products to represent differential forms

$$
\begin{gathered}
0-\text { form }: \quad \varphi(\xi, \eta)=\sum_{i=0}^{N} \sum_{j=0}^{N} \varphi_{i, j} I^{(0), i}(\xi) I^{(0), j}(\eta) \\
1-\text { form }: \quad \mathbf{v}(\xi, \eta)=\sum_{i=1}^{N} \sum_{j=0}^{N} u_{i, j} I^{(1), i}(\xi) I^{(0), j}(\eta)+\sum_{i=0}^{N} \sum_{j=1}^{N} v_{i, j} I^{(0), i}(\xi) I^{(1), j}(\eta) \\
2-\mathrm{form} \quad: \quad \omega(\xi, \eta)=\sum_{i=1}^{N} \sum_{j=1}^{N} \omega_{i, j} I^{(1), i}(\xi) I^{(1), j}(\eta)
\end{gathered}
$$

dd with basis functions

Let the potential φ be a zero form expanded as

$$
\varphi(\xi, \eta)=\sum_{i=0}^{N} \sum_{j=0}^{N} \varphi_{i, j} /^{(0), i}(\xi) /^{(0), j}(\eta)
$$

If we take the exterior derivative we obtain

If we apply the d once more we obtain

TUUDelft

dd with basis functions

Let the potential φ be a zero form expanded as

$$
\varphi(\xi, \eta)=\sum_{i=0}^{N} \sum_{j=0}^{N} \varphi_{i, j} /^{(0), i}(\xi) \prime^{(0), j}(\eta)
$$

If we take the exterior derivative we obtain

$$
\mathrm{d} \varphi(\xi, \eta)=\sum_{i=1}^{N} \sum_{j=0}^{N}\left(\varphi_{i, j}-\varphi_{i-1, j}\right) /^{(1), i}(\xi) ノ^{(0), j}(\eta)+\sum_{i=0}^{N} \sum_{j=1}^{N}\left(\varphi_{i, j}-\varphi_{i, j-1}\right) /^{(0), i}(\xi) ノ^{(1), j}(\eta)
$$

If we apply the d once more we obtain

dd with basis functions

Let the potential φ be a zero form expanded as

$$
\varphi(\xi, \eta)=\sum_{i=0}^{N} \sum_{j=0}^{N} \varphi_{i, j} /^{(0), i}(\xi) /^{(0), j}(\eta)
$$

If we take the exterior derivative we obtain

$$
\mathrm{d} \varphi(\xi, \eta)=\sum_{i=1}^{N} \sum_{j=0}^{N}\left(\varphi_{i, j}-\varphi_{i-1, j}\right) /^{(1), i}(\xi) ノ^{(0), j}(\eta)+\sum_{i=0}^{N} \sum_{j=1}^{N}\left(\varphi_{i, j}-\varphi_{i, j-1}\right) /^{(0), i}(\xi) ノ^{(1), j}(\eta)
$$

If we apply the d once more we obtain

$$
\begin{aligned}
\operatorname{dd} \varphi(\xi, \eta) & =\sum_{i=1}^{N} \sum_{j=1}^{N}\left[\varphi_{i, j}-\varphi_{i-1, j}+\varphi_{i, j+1}-\varphi_{i, j}-\varphi_{i, j+1}+\varphi_{i-1, j+1}-\varphi_{i-1, j+1}+\varphi_{i-1, j}\right]^{(1), i}(\xi) \\
& =\sum_{i=1}^{N} \sum_{j=1}^{N} \delta \delta \varphi_{i, j} /^{(1), i}(\xi) /^{(1), j}(\eta) \equiv 0
\end{aligned}
$$

Computational efficiency

In the previous slides we saw the nested summations

$$
\sum_{i=0}^{N} \sum_{j=0}^{N}
$$

In order to circumvent these, we can also list the expansion coefficients in a row vector and the basis functions in a column vector

$$
\varphi(\xi, \eta)=\left(\begin{array}{llll}
\varphi_{1,1} & \ldots & \ldots & \varphi_{N, N}
\end{array}\right)\left(\begin{array}{c}
I^{(1), 0}(\xi) \prime^{(0), 0}(\eta) \\
\vdots \\
\vdots \\
I^{(1), N}(\xi) \prime^{(0), N}(\eta)
\end{array}\right)
$$

Then taking the exterior derivative (grad in this case) is given by

$$
\mathrm{d} \varphi(\xi, \eta)=\left(\begin{array}{lllll}
\varphi_{1,1} & \ldots & \ldots & \varphi_{N, N}
\end{array}\right) \mathbb{E}_{0,1}\left(\begin{array}{c}
\prime(1), N(\xi) /(0), N(\eta) \\
\prime(0), 0(\xi) ノ^{(1), 1}(\eta) \\
\vdots \\
\prime(0), N(\xi) /(1), N(\eta)
\end{array}\right)
$$

Tomorrow

An important part of differential equations or physical models is topological. In practice metric also enters the picture through the constitutive equations.

Tomorrow we will take a look how we can include metrical terms in the finite volume method and finite element methods.

