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Outline of this lecture

This short course on mimetic spectral elements consists of 6 lectures:
Lecture 1: In this lecture we will review some basic concepts from differential geometry
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Introduction
Previous lectures

On Monday we looked at differential form a(¥) € AK(M) and the
exterior derivative d : AK(M) — AT (M),

Yesterday we look at cochains ¢ ¢ C*(D) and the coboundary
operator 6 : CK(D) — CK*1(D)
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Introduction
Today

Today we are going to look at two operators which allow us two switch
between a continuous representation and the discrete representation:
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Today

Today we are going to look at two operators which allow us two switch
between a continuous representation and the discrete representation:

The Reduction map, R

R - NK(M) — CK(D)

The reconstruction map, Z

7 : CK(D) = N¥(M)
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il
Why do we need these operations?

Sofar, everything that was discussed is purely topological, but at some
point — we will discuss this tomorrow — metric needs to be included.
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il
Why do we need these operations?

Sofar, everything that was discussed is purely topological, but at some
point — we will discuss this tomorrow — metric needs to be included.

Metric cannot be described in the cochain-framework, so whenever we
encounter metric concepts (constitutive equations), we apply Z,
perform the metric operations at the continuous level and then we
apply R to return to the discrete setting.
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Reduction |

Let M be a smooth manifold and D a cell-complex which covers the
manifold.
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Reduction |

Let M be a smooth manifold and D a cell-complex which covers the
manifold.

Let %) € AK(M) and (k) ; € Ck(D), then define Ralk) € CX(D) by

<Ra(k),a(k)’j> ::/ a(k) VO‘(k)’j S Ck(D)

(k).
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~Redution |
Reduction Il

Let c(x) € Ck(D) be a k-chain given by

e
Ciy = ) Wak),
i=1

then

(R ) = 3o (Ral®, )
#k
- Y / al®
i=1 O(k),i

_ / o
C(k)
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Reduction Il

So the reduction map
R : N(M) — CK(D)

is given by
#k

Ral) Z <Ra( ) > o k)i
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Reduction Il

So the reduction map
R : N(M) — CK(D)
is given by

#k
Ra®) =3 <Ra(k), J(k)7i> ().

i=1

The reduction map R is also called the deRham map
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Commutation reduction and differentiation

The reduction map commutes with continuous and discrete derivatives

Rd=0R on Af(M)
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Commutation reduction and differentiation

The reduction map commutes with continuous and discrete derivatives

Rd=0R on Af(M)

d
/\k LN /\k+1

d
Ck _° Ck+1
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Proof

For all k-chains ¢, 1) and all (¥, we have

(k) — (k) — (k)
<Rda 7C(k+1)> /c(k+1) do /80(k+1) °

- <Ro‘(k)va°(k+1)> = <‘5Ro‘(k)’°(k“)>
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Proof

For all k-chains ¢, 1) and all (¥, we have

(k) - (k) — (k)
<Rda ,C(k+1)> /c(kH) da /8c(k+1) o
<Ra(k)’ ac(k+1)> - <5Ra(k)’ °(k+1)>

This is true for all ¢(x.1) and all (%) and therefore Rd = JR.
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Reconstruction |

The reduction, R, is generic. The reconstruction, Z offers much more
freedom. But there are a few basic requirements:
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Reconstruction |

The reduction, R, is generic. The reconstruction, Z offers much more
freedom. But there are a few basic requirements:

RZ =1 on Ck(D)

IR =1+ O(h") on Af(M)
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Reconstruction |

The reduction, R, is generic. The reconstruction, Z offers much more
freedom. But there are a few basic requirements:

RZ=1 on C(D)
IR =1+ O(h") on A(M)

d
/\k LN /\k+1

d
Ck _° Ck+1
&
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Reconstruction |l

Note that
IR : (M) — A (M)
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Reconstruction |l

Note that
IR : (M) — A (M)

We will call 71, := Z'R the projection or discretization
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Reconstruction |l

Note that
IR : (M) — A (M)

We will call 71, := Z'R the projection or discretization

Note that 71 o 7, = 7, because

rhomh =TI RIR=1IR =mp
I
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Reconstruction |l

Note that
IR : (M) — A (M)

We will call 71, := Z'R the projection or discretization

Note that 71 o 7, = 7, because

rhomh =TI RIR=1IR =mp
I

Note that the commutation relations with reduction, reconstruction
and derivatives, give us

drp =dIR =1Z6R = IRd = mpd
_ o . . o Fupelt
The discretization commutes with differentiation!
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Reconstruction ll|

In order to satisfy these properties for k a different reconstruction is
required. So, 0-cochains are reconstructed differently from n-cochains.
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Reconstruction

Reconstruction ll|

In order to satisfy these properties for k a different reconstruction is
required. So, 0-cochains are reconstructed differently from n-cochains.

When we use tensor products, multi-dimensional reconstructions are a
tensor product of one-dimensional reconstructions
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Reconstruction

Reconstruction ll|

In order to satisfy these properties for k a different reconstruction is
required. So, 0-cochains are reconstructed differently from n-cochains.

When we use tensor products, multi-dimensional reconstructions are a
tensor product of one-dimensional reconstructions

Therefore, we will consider the 1D case first
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1D 0-forms from O0-cochains

Consider the interval [—1, 1] and a partitioning
1= <...§1<& <& <...<{nv=1
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1D 0-forms from 0-cochains
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IR =1+ O(hP)
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Nodal reconstruction

Consider the interval [-1, 1] and a partitioning
1= <...§1<§ <& <...<év=1

A nodal reconstruction consists of a set of basis functions /(0)/(¢) with
the property
1 when /i =j
1) = {

0 elsewhere

With such basis functions we can reconstruct the 0-form from the
0-cochain
(&) .= TRF(¢ Z £,1O)1(
.2
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1-form reconstruction |

If we know the 0-cochain f;, we can use the coboundary to construct
the 1-cochain 6f; = (fi — fi_1).

The action of the coboundary operator in pictures

a) Action of ¢ on 0-chain FUDelft
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1-form reconstruction |

If we know the 0-cochain f;, we can use the coboundary to construct
the 1-cochain 6f; = (fi — fi_1).

(fi_fi-1)

(f,,-f)

i+1 i
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1-form reconstruction Il

df(¢) = dTRA(E)

N
> 19(€)
i=0
N .
= Z fid (&)

= fod/(°)°(€)+f1d/ (&) + £dl© 2(£)+ -+ fudl@N(e)

= (f — p)[-d(O0(E)] + (o — £)[—dI@0() — " (£)] +
+(fy — fy—1)[=dl@0(¢) — ... — dlON=1(g)]

= (h =)D + (=~ IV + ...+ (v — fv-1)N(©)

N
= D (hi—fi)IWi(€) = ToRA(€)

with
1D (g) = Zd/(o) ()

This holds for all Rf and therefore we have shown 1'fu|3e|ft

dZ =76
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1-form reconstruction llI

For the nodal basis functions we had the property

_ 1 wheni=j
1O(¢g) =

0 elsewhere

The basis functions which reconstruct the 1-forms satisfy

3 _ 1 wheni=j
|0 -
€1 0

j— elsewhere
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1-form reconstruction Il

GLL nodal interpolation
1.2 ! ! ! [

Polynomial nodal Lagrange basis functions, which are 1 in one point and zero at all other p%nts
TUDelft
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1-form reconstruction Il

GLL edge interpolation
|

Polynomial 1-form reconstruction basis functions, which, when integrated between two
consecutive points gives 0 except for one interval where it yields 1 (see the light gray shadeg

area for the red basis function) TUDelft
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1-form reconstruction IV

Let ¢(!) be a 1-cochain in 1D

N
= Z ajo
i=1

then its reconstruction is given by

Note that

J

/6’ a(1) Z / i — g
§j—1 =1 §j—

Integration along a line segment (reduction of a 1-form) retrieves tbe
1-cochain, i.e RZ = L.

Marc Gerritsma (TUD) Mimetic discretizations Lecture 3 20/25
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1-form reconstruction V

2 2
1 1
0 0
-1 -1

1 -05 0 05 1 1 05 0 05 1 fuDelt
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Tensor product

In the 2D case, we use tensor products to represent differential forms
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Tensor product

In the 2D case, we use tensor products to represent differential forms

N

N
—form cp({n:ZZsD/ (€)1 ()

i=0 j=0
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Tensor product

In the 2D case, we use tensor products to represent differential forms

N N
—form cp({n:ZZso,,/ (€)1 ()

i=0 j=0

N N N N
T—form = v(&n) = > > u DO () + 30 vi O (N ()
i=

=1 j=0 i=0 j=1
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_________________Mulidimensionalcaso |
Tensor product

In the 2D case, we use tensor products to represent differential forms

N N
—form cp({n:ZZso,,/ (€)1 ()

i=0 j=0

N N N N
T—form o v(gm) =30 u @I () + 33 vi O (€)1 ()

i=1 j=0 i=0 j=1

Zwl (1M ()

j=1

—form : w(&n) =

M=

1

-

5
TUDelft

Marc Gerritsma (TUD) Mimetic discretizations Lecture 3 22/25



dd with basis functions

Let the potential ¢ be a zero form expanded as

N N
(&) = Z Z g@,‘,jl(o)"‘(g)/(o),/(n)

i=0 j=0
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dd with basis functions

Let the potential ¢ be a zero form expanded as

N N
(&) = Z Z g@,‘,jl(o)"‘(g)/(o),/(n)

i=0 j=0

If we take the exterior derivative we obtain

N N
Z Z(sol,/ @i YOO () + 3> (i — i) O (€)1 ()
i=1 j=0 i=0 j=1
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dd with basis functions

Let the potential ¢ be a zero form expanded as

N N
(&) = Z Z g@,‘,jl(o)"‘(g)/(o),/(n)

i=0 j=0

If we take the exterior derivative we obtain

N N
Z Z(sol,/ @i YOO () + 3> (i — i) O (€)1 ()
i=1 j=0 i=0 j=1

If we apply the d once more we obtain

M=
M=

ddp(&,n) = [0ij = Pictj + Pije1 — ij — Pijat + Pimtjp1 — @it jr1 + pie1 JIO(E
i=1 j=1
N N ) )
= > 68N ()= 0
i=1 j=1 "
TUDelft
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Computational efficiency

In the previous slides we saw the nested summations

In order to circumvent these, we can also list the expansion coefficients in a row vector and the
basis functions in a column vector

102()10)0(n)

eEm=0®v11 - o ONN )

DN ()0 M)
Then taking the exterior derivative (grad in this case) is given by
101 ()10 ()

[N () /O).N
dpEm = Cona oo Bar | gl (y)

: 'IqU Delft
1O (€)M )
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Tomorrow

An important part of differential equations or physical models is
topological. In practice metric also enters the picture through the
constitutive equations.

Tomorrow we will take a look how we can include metrical terms in the
finite volume method and finite element methods.
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